THE NUMBER OF VECTORS JOINTLY ANNIHILATED BY TWO REAL QUADRATIC FORMS DETERMINES THE INERTIA OF MATRICES IN THE ASSOCIATED PENCIL

Frank Uhlig

Pencils of real symmetric matrices and their associated quadratic forms are interrelated. It is well known that a pencil contains a definite matrix iff the associated quadratic forms do not vanish simultaneously, provided the matrices have dimension $n \geqq 3$. This knowledge is extended here to yield the following for nonsingular pairs of real symmetric matrices of dimension $n \geqq 3$:
(I) The pencil $P(S, T)$ contains a semidefinite, but no definite matrix iff the maximal number l of lin. ind. vectors simultaneously annihilated by the associated quadratic forms lies between 1 and $n-1$ and certain conditions on S and T hold if $l=n-1$.
(II) The pencil $P(S, T)$ contains only indefinite matrices iff $n-1 \leqq l \leqq n$ with other (complementary to the above) conditions holding if $l=n-1$.

First we introduce the relevant notation for a pair of real symmetric (r.s.) matrices S and T of the same dimension n :

Definition 1. (a) The pencil $P(S, T)=\{a S+b T \mid a, b \in \boldsymbol{R}\}$ is a d-pencil if $P(S, T)$ contains a definite matrix.
(b) $P(S, T)$ is a s.d. pencil if $P(S, T)$ contains a nonzero semidefinite, but no definite matrix.
(c) $P(S, T)$ is an i-pencil if $P(S, T)$ contains only indefinite matrices, except for the zero matrix.

Notation. We denote by Q_{S} the set $\left\{x \in \boldsymbol{R}^{n} \mid x^{\prime} S x=0\right\}$.
Definition 2. A pair of r.s. matrices S and T is called a nonsingular pair if S is nonsingular.

This is our main result:

Main Theorem. For a pair of r.s. matrices S and T of dimension $n \geqq 3$ let $l=\max \left\{k \mid\right.$ there exist k lin. ind. vectors in $\left.Q_{S} \cap Q_{T}\right\}$. Then we have:
(a) $P(S, T)$ is a d-pencil iff $l=0$, and for a nonsingular pair S, T :
(b) $P(S, T)$ is a s.d. pencil if and only if $1 \leqq l \leqq n-1$ and

