MULTIPLIERS AND THE GROUP L_p-ALGEBRAS

JOHN GRIFFIN AND KELLY MCKENNON

Let G be a locally compact group, p a number in $[1, \infty]$, and L_p the usual L_p -space with respect to left Haar measure on G. The space L_p^t consists of those functions f in L_p^t such that g*f is well-defined and in L_p for each g in L_p . Since each function in L_p^t may be identified with a linear operator on L_p which, as it turns out, is bounded; the operator norm may be super-imposed on L_p^t and, under this norm $\|\|_p^t$, L_p^t is a normed algebra. The family of right multipliers (i.e., bounded linear operators which commute with left multiplication operators) on any normed algebra A will be written as $m_r(A)$ and the family of left multipliers as $m_1(A)$. The family of all bounded linear operators on L_p which commute with left translations will be written as \mathfrak{M}_p .

It was shown in a previous issue of this journal that the Banach algebra \mathfrak{M}_p is linearly isomorphic to the normed algebra $\mathfrak{M}_r(L_p^t)$, whenever the group G is either Abelian or compact. This fact is shown, in the present paper, to hold for general locally compact G. The norm $\| \|_p^t$ is defective in that, unless $p = 1, (L_p^t, \| \|_p^t)$ is never complete.

An attempt will be made in the sequel to supply this deficiency by the introduction of a second norm $\|\|\|_p^t$ on L_p^t under which L_p^t is always a Banach algebra. It will be seen that, for p=2 (and of course for p=1), the Banach algebra $\mathfrak{m}_r(L_p^t, \|\|\|_p^t)$ is linearly isometric to \mathfrak{M}_p .

Let G be a fixed, but arbitrary, locally compact topological group with left Haar measure λ . Write C_{00} for the family of continuous, complex-valued functions on G with compact support.

Let p be a fixed, but arbitrary, number in $[1, \infty]$ and write $|| ||_p$ for the norm on the Banach space $L_p = L_p(G, \lambda)$. The group L_p algebra L_p^t is the set

$$\{f \in L_p \colon g * f \in L_p \text{ for all } g \in L_p\}$$
.

A function $f \in L_p$ is said to be *p*-tempered and, as shown in [3], the number

$$(1) ||f||_p^t = \sup \{||g*f||_p; g \in C_{00} ||g||_p \leq 1\}$$

is finite. Conversely, if $||f||_p^t$ is finite for some $f \in L_p$, then—as proved in [3]—f is *p*-tempered and there exists precisely one operator W_f in \mathfrak{M}_p such that

$$||W_f|| = ||f||_p^t \hspace{0.2cm} ext{and} \hspace{0.2cm} W_f(g) = g*f$$