# ON FINDING THE DISTRIBUTION FUNCTION FOR AN ORTHOGONAL POLYNOMIAL SET 

Wm. R. Allaway

Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ be real sequences with $b_{n}>0$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ bounded. Let $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ be a sequence of polynomials satisfying the recurrence formula

$$
\begin{cases}x P_{n}(x)=b_{n-1} P_{n-1}(x)+a_{n} P_{n}(x)+b_{n} P_{n+1}(x) & (n \geqq 0)  \tag{1.1}\\ P_{-1}(x)=0 \quad P_{0}(x)=1 .\end{cases}
$$

Then there is a substantially unique distribution function $\psi(t)$ with respect to which the $P_{n}(x)$ are orthogonal. That is,

$$
\int_{-\infty}^{\infty} P_{n}(x) P_{m}(x) d \psi(x)=K_{n} \delta_{n, m} \quad(n, m \geqq 0)
$$

where $K_{n} \neq 0$ and $\delta_{n, m}$ is the kronecker delta. This paper gives a method of constructing $\psi(x)$ for the case $\lim _{n \rightarrow \infty} b_{2 n}=0$, $\lim _{n \rightarrow \infty} b_{2 n+1}=b<\infty$, the set of limit points of $\left\{a_{n}\right\}_{n=1}^{\infty}$ equals $\{-\alpha, \alpha\}$ and $\lim _{n \rightarrow \infty}\left\{a_{2 n}+a_{2 n+1}\right\}=0$. The same method can be used in the case $\lim _{n \rightarrow \infty} b_{n}=0$ and the set of limit points of $\left\{a_{n}\right\}_{n=0}^{\infty}$ is bounded and finite in number.

This continues the investigation started by Dickinson, Pollak, and Wannier [3] in which they studied the distribution function under the assumption $a_{n}=0$ and $\Sigma b_{n}<\infty$. Goldberg [4] extended their results by considering the case $\alpha_{n}=0$ and $\lim _{n \rightarrow \infty} b_{n}=0$. Finally, Maki [5] showed how to construct the distribution function when $\lim _{n \rightarrow \infty} b_{n}=0$ and the set of limit points of $\left\{a_{n}\right\}_{n=0}^{\infty}$ are bounded and finite in number. In all these cases their approach was to study the continued fraction

$$
\begin{equation*}
K(z)=\frac{1}{\mid z-a_{0}}-\frac{b_{0}^{2} \mid}{\mid z-a_{1}}-\frac{b_{1}^{2} \mid}{\mid z-a_{2}} \cdots \tag{1.2}
\end{equation*}
$$

where $\left\{b_{n}\right\}_{n=0}^{\infty}$ and $\left\{a_{n}\right\}_{n=0}^{\infty}$ consist of the same numbers as given in (1.1).
Our approach is different from that of the above mentioned authors. If $S(\psi)$ denotes the spectrum of $\psi$, i.e., the set $\{\lambda \mid \psi(\lambda+\varepsilon)-\psi(\lambda-\varepsilon)>0$ for all $\varepsilon>0\}$, then, in our case, we will show from the properties of the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ how to find the derived set of $S(\psi)$ and that the $S(\psi)$ consists of a denumerable set of points.

To prove our results we make use of the following theorem due to M. Krein ([1], p. 230-231).

Theorem 1.1. The polynomial set defined by (1.1) is associated with a determined Hamburger moment problem with solution $\psi$, such that $S(\psi)$ is bounded and the set of limit points of $S(\psi)$ is contained

