THE GARABEDIAN FUNCTION OF AN ARBITRARY COMPACT SET

Eric P. Smith

If the outer boundary of the compact plane set E is the union of finitely many disjoint analytic Jordan curves, the Garabedian function of E is a familiar object. J. Garnett and S. Y. Havinson have each asked whether the Garabedian functions of a decreasing sequence of such sets must converge. The present paper shows that they do converge. This fact leads to a natural definition of the Garabedian function of an arbitrary compact plane set. As an intermediate step, an approximate formula is obtained for the analytic capacity of the union of a compact set E and a small disc not intersecting E.

1. Prerequisites and notation. Good introductions to Analytic Capacity are given in [2], pp. 1-26, and [1], Ch. 8; and so we shall give only a brief outline.

C denotes the complex plane. S^{z} denotes the extended complex plane with its usual topology. D(z; r) denotes the closed disc with centre z and radius r.

Let *E* be a compact subset of *C*. $\Omega(E)$ denotes the component of $S^{2} \setminus E$ containing ∞ . The *outer boundary* of *E* is the boundary $\partial \Omega(E)$ of $\Omega(E)$. The *analytic capacity* of *E* is:

 $\gamma(E) = \sup \left\{ \mid g'(\infty) \mid : g ext{ analytic on } \Omega(E), \mid g \mid < 1
ight\}$.

This supremum is attained by a unique function, the Ahlfors function of E ([1], p. 197).

 \mathscr{S} will denote the class of all compact plane sets whose outer boundary is the union of finitely many pairwise disjoint analytic Jordan curves. Let $E \in \mathscr{S}$, and write $\Omega = \Omega(E)$. The Hardy space $H^p(\Omega)$ (0 is the space of all analytic functions <math>g on Ω such that there exists a harmonic function u on Ω with $|g|^p < u$. If $g \in H^p(\Omega)$ then g has a finite nontangential limit g(z) at almost every point $z \in \partial \Omega$. $H^2(\Omega)$ is a separable Hilbert space with the inner product:

$$(g, h) = \int_{sa} g(z)h(z)^*ds \quad (g, h \in H^2(\Omega)) \;.$$

If $\zeta \in \Omega$ there is a unique function $K(z, \zeta)$ in $H^2(\Omega)$, the Szegö kernel function, such that:

$$g(\zeta) = \int_{\scriptscriptstyle \partial \varOmega} g(z) K(z, \, \zeta)^* ds \quad (g \in H^2(\Omega)) \;.$$

 $K(z, \zeta)$ is the inner product between the functionals on $H^2(\Omega)$ given