THE GARABEDIAN FUNCTION OF AN ARBITRARY COMPACT SET

Eric P. Smith

Abstract

If the outer boundary of the compact plane set E is the union of finitely many disjoint analytic Jordan curves, the Garabedian function of E is a familiar object. J. Garnett and S. Y. Havinson have each asked whether the Garabedian functions of a decreasing sequence of such sets must converge. The present paper shows that they do converge. This fact leads to a natural definition of the Garabedian function of an arbitrary compact plane set. As an intermediate step, an approximate formula is obtained for the analytic capacity of the union of a compact set E and a small disc not intersecting E.

1. Prerequisites and notation. Good introductions to Analytic Capacity are given in [2], pp. 1-26, and [1], Ch. 8; and so we shall give only a brief outline.
C denotes the complex plane. S^{2} denotes the extended complex plane with its usual topology. $D(z ; r)$ denotes the closed dise with centre z and radius r.

Let E be a compact subset of $C . \Omega(E)$ denotes the component of $S^{2} \backslash E$ containing ∞. The outer boundary of E is the boundary $\partial \Omega(E)$ of $\Omega(E)$. The analytic capacity of E is:

$$
\gamma(E)=\sup \left\{\left|g^{\prime}(\infty)\right|: g \text { analytic on } \Omega(E),|g|<1\right\}
$$

This supremum is attained by a unique function, the Ahlfors function of E ([1], p. 197).
\mathscr{S} will denote the class of all compact plane sets whose outer boundary is the union of finitely many pairwise disjoint analytic Jordan curves. Let $E \in \mathscr{S}$, and write $\Omega=\Omega(E)$. The Hardy space $H^{p}(\Omega)$ $(0<p<\infty)$ is the space of all analytic functions g on Ω such that there exists a harmonic function u on Ω with $|g|^{p}<u$. If $g \in H^{p}(\Omega)$ then g has a finite nontangential limit $g(z)$ at almost every point $z \in \partial \Omega . H^{2}(\Omega)$ is a separable Hilbert space with the inner product:

$$
(g, h)=\int_{\partial \Omega} g(z) h(z)^{*} d s \quad\left(g, h \in H^{2}(\Omega)\right)
$$

If $\zeta \in \Omega$ there is a unique function $K(z, \zeta)$ in $H^{2}(\Omega)$, the Szegö kernel function, such that:

$$
g(\zeta)=\int_{\partial \Omega} g(z) K(z, \zeta) * d s \quad\left(g \in H^{2}(\Omega)\right)
$$

$K(z, \zeta)$ is the inner product between the functionals on $H^{2}(\Omega)$ given

