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THE NON ABSOLUTE NORLUND SUMMABILITY
OF FOURIER SERIES

G. Das AND R. N. MOHAPATRA

The paper is devoted partly to the study of non-absolute
Norlund summability of Fourier series of ¢(t) under the con-
dition ¢(t)x(t) e AC[0, z] for suitable X(t). The other aspect is
to determine the order of variation of the Harmonic mean of
the Fourier series whenever ¢(t) log k/te BV [0, z].

1. Let L denote the class of all real functions f with period 27
and integrable in the sense of Lebesgue over (—m, 7) and let the
Fourier series of fe L be given by

S\ (@, cosnt + b, sinnt) = 3 A(t) ,

assuming, as we may, the constant term to be zero.

We write
46 = = (fw + ) + flz — 1)
t cos nu
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Wn, t) = Feosmu g

(1) = | - du
Let {p,} be a sequence of constants such that P, = 3" ,p, %= 0

(n=0) and P, = p_, = 0. For the definition of absolute Norlund or
(N, p) method, see, for example, Pati [9]. When 37, a, is absolutely
(N, p) summable, we shall write, for brevity, > .a,€|N, p|.

We define the sequence of constants {¢,} formally by (G, p,2™)™" =
S sCux™ e, = 0.

2. One of the objects of this paper is to study the non-absolute
(N, p) summability factors of Fourier series and generalize the follow-
ing outstanding result of Pati in Theorems 1-2. Besides, the proof
of Theorems 1-2 are short and simple and avoids the direct technique
of Pati which is somewhat long and complicated.

If we write

G = {f:7e L, o) log ki ACI0, ] and 3, 4,(@)¢ ‘N, L ]‘
n=1 n+ 1)

then Pati’s theorem is in the following form:
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