SUBALGEBRAS OF FINITE CODIMENSION IN THE ALGEBRA OF ANALYTIC FUNCTIONS ON A RIEMANN SURFACE

Bruce Lund

Let R be a finite open Riemann surface with boundary Γ. We set $\bar{R}=R \cup \Gamma$ and let $A(R)$ denote the algebra of functions which are continuous on \bar{R} and analytic on R. Suppose A is a uniform algebra contained in $A(R)$. The main result of this paper shows that if A contains a function F which is analytic in a neighborhood of \bar{R} and which maps \bar{R} in a n-toone manner (counting multiplicity) onto $\{z:|z| \leqq 1\}$, then A has finite codimension in $A(R)$.

We say that A is a uniform algebra on \bar{R} if A is a uniformly closed subalgebra of the complex-valued continuous functions on \bar{R} which separates points of \bar{R} and contains the constant functions. If A is contained in $A(R)$, then we say A has finite codimension in $A(R)$ if $A(R) / A$ is a finite dimensional vector space over C. A reference for uniform algebras is Gamelin [2].

Let U be the open unit disk in C. We call F an unimodular function if F is analytic in a neighborhood of \bar{R} and maps \bar{R} onto \bar{U} so that F is n-to-one if we count the multiplicity of F where $d F$ vanishes. If T is the unit circle, then F maps Γ onto T. The existence of such a function was first proved by Ahlfors [1]. Later, Royden [4] gave another proof of this result.

1. Main results. Let A be a uniform algebra on \bar{R} which is contained in $A(R)$. If $J=\{f \in A(R): f A(R) \subset A\}$, then J is a closed ideal in $A(R)$ and J is contained in A.

Lemma. Let $F \in A$ be an unimodular function of order n. If $\zeta_{1} \in \bar{R}$ is such that $F^{-1}\left(F\left(\zeta_{1}\right)\right)$ consists of n distinct points, then there is $G \in J$ such that $G\left(\zeta_{1}\right) \neq 0$.

Proof. Since A separates points on \bar{R}, there is $g \in A$ such that g separates $F^{-1}\left(F\left(\zeta_{1}\right)\right)$. If $z_{1} \in \bar{R}$, let $F^{-}\left(F\left(z_{1}\right)\right)=\left\{z_{1}, z_{2}, \cdots, z_{n}\right\}$ (perhaps with repetitions) and let $f \in A(R)$.

Define $Q(u)=f\left(z_{1}\right)\left\{u-g\left(z_{2}\right)\right\}\left\{u-g\left(z_{3}\right)\right\} \cdots\left\{u-g\left(z_{n}\right)\right\}+f\left(z_{2}\right)\{u-$ $\left.g\left(z_{1}\right)\right\}\left\{u-g\left(z_{3}\right)\right\} \cdots\left\{u-g\left(z_{n}\right)\right\}+\cdots+f\left(z_{n}\right)\left\{u-g\left(z_{1}\right)\right\}\left\{u-g\left(z_{2}\right)\right\} \cdots\{u-$ $\left.g\left(z_{n-1}\right)\right\}$ (cf. [5], p. 290). Then $Q(u)$ is a polynomial in u of the form $Q(u)=\alpha_{n-1}\left(z_{1}, \cdots, z_{n}\right) u^{n-1}+\alpha_{n-2}\left(z_{1}, \cdots, z_{n}\right) u^{n-2}+\cdots+\alpha_{0}\left(z_{1}, \cdots, z_{n}\right)$. The coefficients α_{j} are symmetric functions in z_{1}, \cdots, z_{n}. Hence, if

