PHRAGMÉN-LINDELÖF TYPE THEOREMS FOR A SYSTEM OF NONHOMOGENEOUS EQUATIONS

KUANG-HO CHEN

Hyperbolic systems of N equations are considered

(1) $\partial u/\partial t = P(D)u + f(x, t)$, with u in \mathbb{R}^N and (x, t) in $\mathbb{R}^n \times \mathbb{R}^1$,

where $D = i\partial/\partial x$. For suitable source functions f(x, t) there are solutions satisfying the boundedness condition

(2) $|u(x, t)| \leq C \exp \{a | x |^{\gamma} + b | t |^{\theta}\}, 0 \leq \theta < 1, 0 \leq \gamma < p$

where p is the conjugate of $2p_0$, with p_0 the reduced order of the matrix $P(\xi)$. Furthermore, the solutions are polynomials in t if the initial states u(x, 0) grow at infinity like polynomials. However, these solutions are not unique; a requirement of a certain type of u(x, 0) at infinity is needed. The one-dimensional classical Phragmén-Lindelöf theorem and some results of Shilov for homogeneous systems are instances of this. It is the purpose here to supply a general (necessary and for some cases sufficient) condition for uniqueness. Preliminary to that a necessary condition is found on f(x, t) so that (1) admits solutions that are polynomials in t.

The one-dimensional classical theorem of Phragmén-Lindelöf can be stated as follows: If u is a soultion of the Cauchy-Riemann equation $\partial u/\partial t = iu/\partial x$ on $R^i \times R^i$ fulfilling the boundedness condition (2) with $\gamma = \theta < 1$ and

$$(3) |u(x, 0)| \leq C(1 + |x|)^{\nu}, \quad \nu \geq 0,$$

then u is a polynomial in (x, t). Therefore, u is identically zero provided condition (3) is replaced by the decay condition on the initial state

(4)
$$u(x, 0) = \theta(|x|^{-d}), \quad d \ge 0, \quad \text{when} \quad x \to \infty.$$

Shilov [4], [5] or [6] has improved this theorem for a system of N partial differential equation (1) with f = 0 under the boundedness conditions (2) and (3). If the eigenvalues of $P(\xi)$ are real for each real vector $\xi \in \mathbb{R}^n$, then u has the expression

(5)
$$u(x, t) = \sum_{0}^{r} U_k(x)t^k$$
, $r = 2[(n + \nu)/2] + N + 1$

where the functions U_k are solutions of the systems

$$P(D) U_{k-1} = k U_k , \qquad k = 0, \ \cdots, \ r-1 , \ P(D) U_r = 0 \quad ext{on} \quad R^n .$$