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SOME REMARKS ON HARMONIC MEASURE
IN SPACE

WILLIAM P. ZIEMER

The purpose of this paper is to examine the relationship
between harmonic measure and n — 1 dimensional Hausdorff
measure for a class of domains in Rn with irregular bounda-
ries. It is shown for these domains that harmonic measure
and Hausdorff measure have the same null sets.

This investigation was motivated in part by the work of Hunt
and Wheeden, [5], [6]. In these papers they consider Lipschitz
domains, that is, domains whose boundaries are locally representable
by graphs of Lipschitz functions. One of their main results is that
a positive harmonic function defined on a Lipschitz domain has a
nontangential limit at all points of the boundary except possibly those
that belong to a set of harmonic measure zero. In the classical case
where the domain is taken to be the half-space of Rn, the nontangential
limit is known to exist at H71'1 almost every point of the boundary,
c.f., [2], [3]. We will show that for domains Ω satisfying a geometric
measure theoretic condition, Hn~ι (restricted to the boundary of Ω) and
harmonic measure have the same null sets. Therefore, for these
domains, the results of Hunt and Wheeden will represent a general-
ization of the classical case.

By use of the conformal mapping theorem it is not difficult to
prove, for a domain in R2 whose boundary is a simple closed rectifiable
curve, that harmonic measure and H1 measure have the same null
sets. In § 4 it will be shown that the analog of this does not hold
in R3. We give an example of a topological 2-sphere whose boundary
has finite H2 measure and has a tangent plane at each point, but for
which H2 measure is not absolutely continuous with respect to harmonic
measure.

2* Preliminaries* Let Ω be a bounded open subset of Rn and
consider the Banach space C(dΩ), the space of continuous functions
on the compact set dΩ with the norm given by s\ιp{\f(y)\:yedΩ}9

feC(dΩ). For each xeΩ, let Xx: C(dΩ) -> R1 be the bounded linear
functional defined by λ x(/) = uf(x), where uf is the harmonic function
corresponding to the boundary values /. Hence, there is a unit
measure μx on dΩ called harmonic measure, such that

K(f) = uf(x) = j fdμx ,

/ 6 C(dΩ). If G is a component of Ω, the class of Borel subsets of
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