LINEAR TRANSFORMATIONS ON SYMMETRIC SPACES

Abstract

M. H. Lim

Let U be an n-dimensional vector space over an algebraically closed field F of characteristic zero, and let $\mathrm{V}^{r} U$ denote the r th symmetric product space of U. Let T be a linear transformation on $\mathrm{V}^{r} U$ which sends nonzero decomposable elements to nonzero decomposable elements. We prove the following: (i) If $n=r+1$ then T is induced by a nonsingular transformation on T. (ii) If $2<n<r+1$ then either T is induced by a nonsingular transformation on U or $T\left(\mathbf{V}^{r} U\right)=\mathbf{V}^{r} W$ for some two dimensional subspace W of U.

The result for $n>r+1$ was recently obtained by L. J. Cummings.

1. Preliminaries. Let U be a finite dimensional vector space over an algebraically closed field F. Let $\mathrm{V}^{r} U$ denote the r th symmetric product space over U where $r \geqq 2$. Unlese otherwise stated, the characteristic of F is assumed to be zero or greater than r.

A decomposable subspace of $\mathbf{V}^{r} U$ is a subspace consisting of decomposable elements. Let x_{1}, \cdots, x_{r-1} be $r-1$ nonzero vectors in U. Then the set $\left\{x_{1} \vee \cdots \vee x_{r-1} \vee u: u \in U\right\}$, denoted by $x_{1} \vee \cdots \vee x_{r-1} \vee U$, is a decomposable subspace of $\mathbf{V}^{r} U$ and is called a type 1 subspace of $\mathrm{V}^{r} U$. Let W be a two dimensional subspace of U. It is shown in [2] that $\mathrm{V}^{r} W$ is decomposable and is called a type r subspace of $\mathbf{V}^{r} U$. If y_{1}, \cdots, y_{r-k} are vectors in $U-W$ where $1<k<r$, then the set $\left\{y_{1} \vee \cdots \vee y_{r-k} \vee w_{1} \vee \cdots \vee w_{k}: w_{i} \in W, i=1, \cdots, k\right\}$, denoted by $y_{1} \vee \cdots \vee y_{r-k} \vee W \vee \cdots \vee W$, is also decomposable and is called a type k subspace of $\mathbf{V}^{r} U$. In [2] Cummings showed that every maximal decomposable subspee of $\mathbf{V}^{r} U$ is of type i for some $1 \leqq i \leqq r$.

A linear transformation on $\mathbf{V}^{r} U$ is called a decomposable mapping if it maps nonzero decomposable elements to nonzero decomposable elements. In [3] Cummings proved that if $\operatorname{dim} U>r+1$ then every decomposable mapping T on $\mathbf{V}^{r} U$ is induced by a nonsingular linear transformation f on U; that is, $T\left(y_{1} \vee \cdots \vee y_{r}\right)=f\left(y_{1}\right) \vee \cdots \vee f\left(y_{r}\right)$. In this paper we consider the case when $3 \leqq \operatorname{dim} U \leqq r+1$.
2. The case when $\operatorname{dim} U=r+1$. Two type 1 subspaces M_{1} and M_{2} of $\mathbf{V}^{r} U$ are called adjacent if

$$
\begin{aligned}
& M_{1}=x_{1} \vee \cdots \vee x_{r-2} \vee y_{1} \vee U \\
& M_{2}=x_{1} \vee \cdots \vee x_{r-2} \vee y_{2} \vee U
\end{aligned}
$$

