A "GOING DOWN" THEOREM FOR CERTAIN REFLECTED RADICALS

B. J. GARDNER AND PATRICK N. STEWART

In a category \mathscr{K} suitable for radical theory, a functor $\phi: \mathscr{K} \to \mathscr{K}$ is studied which is associated with a natural transformation $1_{\mathscr{K}} \to \phi$ in a way which bears a formal resemblance to the behavior of certain "extension" functors of rings, such as that which assigns to each A the polynomial ring A[x]: every normal subobject $N \to \phi(A)$ has a "contraction" $N^c \to A$. For a radical class \mathscr{R} in \mathscr{K} such that $\mathscr{R}^* = \{A | \phi(A) \in \mathscr{R}\}$ is also radical, some conditions are obtained which imply that $\mathscr{R}^*(A) = \mathscr{R}(\phi(A))^c$.

1. Preliminaries. We shall work in a category \mathscr{K} for which the general theory of radicals can be developed (for a set of conditions on \mathscr{K} which ensure this and for some other remarks on radicals in categories, see [9]) and shall consider a left-exact functor $\Phi: \mathscr{K} \to \mathscr{K}$ which has associated with it a natural transformation $1_{\mathscr{K}} \to \Phi$, which will be fixed throughout the discussion. We shall further assume that for each normal subobject $N \to \Phi(A)$ there is a normal subobject $N^{c_A} \to A$ and a pullback

where the right-hand vertical map is defined by the natural transformation mentioned above. When no confusion can result, N^{eA} will be abbreviated to N^e . We shall frequently find it convenient to write A^e for $\Phi(A)$. A prototypical example of such a functor is that which assigns to each ring A its polynomial ring A[x], in which case $A^e =$ A[x] ("extension") and $N^e = N \cap A$ ("contraction"). The symbol $A \rightarrow A^e$ will always denote a map defined by the given natural transformation.

Our category-theoretic terminology is essentially that of [2]. We shall not distinguish notationally between a subobject and a representative map. In particular if $A \in \mathcal{K}$ and \mathcal{R} is a radical class, $\mathcal{R}(A) \rightarrow A$ will denote the \mathcal{R} -radical of A.

PROPOSITION 1.1.

(a) If $N \to A$ is a normal subobject, then $N \to A \subseteq N^{ec} \to A$.

(b) If $N_1 \rightarrow A^e \subseteq N_2 \rightarrow A^e$ are normal subobjects then $N_1^e \rightarrow A \subseteq N_2^e \rightarrow A$.