AN OBSTRUCTION TO EXTENDING ISOTOPIES OF PIECEWISE LINEAR MANIFOLDS

EWING L. LUSK

Let $F: M \times I^n \to Q \times I^n$ be an *n*-isotopy (not necessarily PL) of a compact PL *m*-manifold *M* in a PL *q*-manifold *Q*, and let $G: Q \times I^n \to Q \times I^n$ be an ambient isotopy of *Q* which covers *F* on $Q \times \partial I^n$. If $m \leq q-3$ there is in $\pi_n PL(M,Q)$ an obstruction to finding an ambient isotopy of *Q*, isotopic to *G*, which covers *F* and agrees with *G* on $Q \times \partial I^n$.

Introduction. In the proof of the Hudson-Zeeman cover-1. ing isotopy theorem [6], one has no control over the homeomorphism of the ambient manifold which one obtains at the end of the isotopy. In general, one might ask for sufficient conditions under which a given *n*-isotopy $F: M \times I^n \to Q \times I^n$ of one PL manifold in another, fixed on ∂M , can be covered by an ambient *n*-isotopy $H: Q \times I^n \to Q \times I^n$ fixed on ∂Q , in such a way that $H | Q \times \partial I^n$ is equal to some given levelpreserving homeomorphism G of $O \times \partial I^n$ which covers $F | M \times$ ∂I^n . Necessary conditions are that F be level-preservingly locally flat and that G have some extension to $Q \times I^n$ which is fixed on ∂Q . That these conditions are not sufficient can be seen by considering an isotopy $F: S^1 \times I \rightarrow I^2 \times I$ of a circle in the interior of I^2 which rotates the circle through 360° . Since F can be chosen PL and locally flat, it follows from the ordinary covering isotopy theorem [6] that F can be covered by an ambient isotopy H of I^2 which is fixed on ∂I^2 . But if $G: \partial(I^2 \times I) \rightarrow \partial(I^2 \times I)$ is the identity homeomorphism, then H cannot be an extension of G. The difficulty here arises from the fact that the space of embeddings of S^1 into I^2 is not simply connected. The theorem below extends results of Gluck, Husch, and Rushing [3,8]. Let M and O be PL m- and q-manifolds respectively, with M compact, and let PL(M,Q;f) denote the semi-simplicial complex of proper PL embeddings of M into Q, with base point f.

THEOREM 1. Let $F: M \times I^n \to Q \times I^n$ be a proper levelpreservingly locally flat n-isotopy (not necessarily PL) fixed on ∂M . Let $G: Q \times I^n \to Q \times I^n$ be an ambient n-isotopy of Q, fixed on ∂Q , such that $G \circ (F_0 \times 1) | M \times \partial I^n = F | M \times \partial I^n$. Suppose that $m \leq q-3$. Then there is a homeomorphism h of Q such that hF_0 is PL and an obstruction α in π_n PL(M, Q; hF_0) such that $\alpha = 0$ if and only if there is a level-preserving isotopy K of $Q \times I^n$, fixed on $\partial (Q \times I^n)$, such that $K_1G \circ (F_0 \times 1) = F$; i.e. K_1G extends $G | Q \times \partial I^n$ and covers F.