COEFFICIENT BOUNDS FOR SOME CLASSES OF STARLIKE FUNCTIONS

ROGER BARNARD AND JOHN L. LEWIS

Let t be given, $1/4 \le t \le \infty$, and let S(t) denote the class of normalized starlike univalent functions f in |z| < 1 satisfying (i) $|f(z)/z| \ge t$, |z| < 1, if $1/4 \le t \le 1$, (ii) $|f(z)/z| \ge t$, |z| < 1, if $1 < t \le \infty$. If $f(z) = z + \sum_{k=2}^{\infty} a_k z^k \in S(t)$ and n is a fixed positive integer, then the authors obtain sharp coefficient bounds for $|a_n|$ when t is sufficiently large or sufficiently near 1/4. In particular a sharp bound is found for $|a_3|$ when $1/4 \le t \le 1$ and $5 \le t \le \infty$. Also a sharp bound for $|a_4|$ is found when $1/4 \le t \le 1$ or $12.259 \le t \le \infty$.

1. Introduction. Let S denote the class of starlike univalent functions f in $K = \{z : |z| < 1\}$ with the normalization, f(0) = 0, f'(0) = 1. Given t, $1/4 \le t \le \infty$, let S(t) denote the subclass of functions $f \in S$ satisfying

(1.1)
$$|f(z)/z| \ge t, z \in K, \text{ if } 1/4 \le t \le 1,$$

(1.2)
$$|f(z)/z| \leq t, z \in K, \text{ if } 1 < t \leq \infty.$$

If $1/4 < t \le 1$, we let $F = F(\cdot, t)$ be defined by

(1.3)
$$zF'(z)/F(z) = [1+2(2b^2-1)z+z^2]^{1/2}/(1-z), z \in K,$$

where $0 \le b < 1$ and $t = [(1+b)^{1+b} (1-b)^{1-b}]^{-1}$. The function $F = F(\cdot, t)$ defined by (1.3) is in S(t) for $1/4 < t \le 1$, as can be shown by a long but straightforward calculation (see Suffridge [9]). For fixed t, $1/4 < t \le 1$, this function maps K onto the complex plane minus a set

$$\{w: |w| \ge t, \qquad \pi b \le \arg w \le 2\pi - \pi b\}.$$

If $1 < t < \infty$, we let $F = F(\cdot, t) \in S(t)$ be defined by

(1.4)
$$\frac{F(z)}{[1-t^{-1}F(z)]^2} = \frac{z}{(1-z)^2}, z \in K.$$

It is well known (see Nehari [4, p. 224, ex.4]) that the function F maps K onto a domain whose boundary consists of $\{w : |w| = t\}$, and a slit along the negative real axis from -t to $-\lambda$ where $4\lambda t^2 = (t + \lambda)^2$. If t = 1/4 or $t = \infty$, we let