CONCERNING σ-HOMOMORPHISMS OF RIESZ SPACES

C. T. Tucker

Abstract

If L is a Riesz space (lattice ordered vector space), a Riesz homomorphism of L is an order preserving linear map which preserves the finite operations " V " and " \wedge ". It was shown in our previous paper ["Homomorphisms of Riesz spaces," Pacific J. Math.] that there is a large class α of spaces such that if L belongs to α and φ is a Riesz homomorphism from L onto an Archimedean Riesz space, then φ preserves the order limit of sequences. In this paper the list of members of α is extended. It is further shown that there is a large class β of spaces with the property that if L belongs to α and φ is a Riesz homomorphism of L into an Archimedean Riesz space then φ preserves the order limit of sequences.

This paper is a continuation and extension of Tucker [4]. The notation and terminology of Tucker [4] will be used.

Lemma 1. Suppose L is a Riesz space with the principal projection property, K is an Archimedean Riesz space, and φ is a Riesz homomorphism of L into K with the property that if $\left\{b_{1}, b_{2}, b_{3}, \cdots\right\}$ is a countable orthogonal subset of L^{+}such that $b=\mathrm{V} b_{i}$, then $\varphi\left(b-\sum_{i=1}^{j} b_{i}\right) \rightarrow \theta$, then φ preserves the order limits of sequences.

Proof. Suppose $f_{1}, f_{2}, f_{3}, \cdots$ is a sequence of points of L such that $f_{1} \geqq f_{2} \geqq f_{3} \geqq \cdots \geqq \theta$ and $\wedge f_{i}=\theta$. Suppose, further, that n is a positive integer. For each i let $g_{i}=f_{i}-\left(1 / 2^{n}\right) f_{1}, h_{i}=\mathrm{V}_{p}\left(p g_{i}^{+} \wedge g_{1}\right)$, and $b_{i}=h_{i}-h_{i+1}$. Consider b_{i} and b_{j} where $j>i$. Now $b_{j} \leqq h_{i+1}$ and $\quad b_{i} \leqq g_{1}-h_{i+1}$, so that $\theta=h_{i+1} \wedge\left(g_{1}-h_{i+1}\right) \geqq b_{j} \wedge b_{i}$. Thus $\left\{b_{1}, b_{2}, b_{3}, \cdots\right\}$ is a countable orthogonal set.

Since $g_{1} \geqq b_{i}$ for each i, g_{1} is an upper bound of $\left\{b_{1}, b_{2}, b_{3}, \cdots\right\}$. Suppose α is a point such that $g_{1}-\alpha \geqq b_{i}$ for each i and $\alpha \geqq \theta$. Let i be a positive integer and let β be the projection of α on b_{i}. Then $g_{1}-\beta \geqq b_{i}$. Now $b_{i}+\sum_{j=1}^{i-1} b_{j}+h_{i+1}=h_{1}=g_{1}$ and $b_{i} \wedge\left(\sum_{j=1}^{i-1} b_{j}+\right.$ $\left.h_{i+1}\right)=\theta$ so that $\beta \wedge\left(g_{1}-b_{i}\right)=\theta$. Since $g_{1}-\beta \geqq b_{i}, g_{1}-b_{i} \geqq \beta$ which implies $\left(g_{1}-b_{i}\right) \wedge \beta=\beta$, so that $\beta=\theta$. Thus for each i, $\alpha \wedge b_{i}=\theta$. Now $g_{1} \geqq b_{i}$ so that $g_{1} \geqq \mathrm{~V}_{j=1}^{i} b_{j} \vee \alpha=\sum_{j=1}^{i} b_{j}+\alpha=$ $h_{1}-h_{i+1}+\alpha=g_{1}-h_{i+1}+\alpha$ which implies $h_{i+1} \geqq \alpha$.

Now $g_{i}^{-} \wedge g_{i}^{+}=\theta$ which implies $g_{i}^{-} \varepsilon\left(g_{i}^{+}\right)^{d}$. As h_{i} is the projection of g_{1} on $g_{i}^{+}, h_{i} \wedge g_{i}^{-}=\theta$.

Without loss of generality we may assume that $\left(1 / 2^{n}\right) f_{1} \geqq \alpha$. Then

