A COUNTEREXAMPLE IN THE THEORY OF DEFINABLE AUTOMORPHISMS

MARTIN ZIEGLER

As it is well known, the groups of definable automorphisms of two elementary equivalent relational structures satisfy the same \forall_1 -statements. We show that this does not hold in general for \forall_2 -statements, thus correcting an error in the literature.

0. An automorphism φ of a model \mathfrak{M} is said to be definable if there is a formula H of the (first-order) language of \mathfrak{M} and elements $a_1, \dots, a_n \in M$, such that for all $x, y \in M$

$$\mathfrak{M} = H(x, y, a_1, \cdots, a_n) \quad \text{iff} \quad \varphi(x) = y.$$

Let Def Aut (\mathfrak{M}) denote the group of definable automorphisms of \mathfrak{M} (see [5]).

In [1] it is remarked that if \mathfrak{M} and \mathfrak{N} are elementary equivalent, then Def Aut (\mathfrak{M}) and Def Aut (\mathfrak{N}) are universally equivalent. In this note we show that this is the best possible result. We give an example of an $\forall \exists$ -statement, which holds in Def Aut (\mathfrak{M}) but not in Def Aut (\mathfrak{M}'), where \mathfrak{M} and \mathfrak{M}' are two elementary equivalent models. In fact our \mathfrak{M}' is an elementary extension of \mathfrak{M} . This disproves Theorems 1,2 in [3] (p. 109).

We construct our example from the Prüfer group $Z(3^{\circ})$ and investigate definability using the method of Ehrenfeucht games.

1. Our example is as follows. H is the (group theoretical) statement

$$\forall x \exists y \ x = y^2.$$

We define \mathfrak{M} to be $(M, Z, \omega, <, f)$, where M is the disjoint union of Z and ω . Z is the underlying set of the Prüfergroup $\mathbb{Z}(3^{\circ})$, which is defined as

$$\left\{\frac{n}{3^m}\,\middle|\,n,m\in\mathbf{Z}\right\}/\mathbf{Z}.$$

< is the natural ordering of ω , the set of natural numbers. f is a binary function defined by