ABSOLUTELY DIVERGENT SERIES AND ISOMORPHISM OF SUBSPACES

WILLIAM H. RUCKLE

We consider the relation between the following two statements for E and F a pair of normed spaces.

(SI) For each absolutely divergent series $\sum_n x_n$ in E there is a continuous linear mapping T from E into F such that $\sum_n Tx_n$ diverges absolutely.

(LI) The finite dimensional subspaces of E are uniformly isomorphic to subspaces of F under isomorphisms which extend to all of E without increase of norm.

Our main result is that (SI) implies (LI) when F is isometric to $F \times F$ with a certain type of norm. We also observe that if a normed space E is not isomorphic to a subspace of an $L_p(\mu)$ space, then for each r with $1 \le r < \infty$ there is a series $\sum_n x_n$ in E such that $\sum_n ||Tx_n||^r < \infty$ for each continuous linear mapping T from E into l_p but $\sum_n ||x_n||^r = \infty$.

It is not hard to show that $(LI) \Rightarrow (SI)$ (Proposition 4.1). The main thrust of our work is to prove that $(SI) \Rightarrow (LI)$ in some important cases when F has infinite dimension. (Theorems 4.2 and 4.6). Our most important result is Theorem 4.6 which roughly maintains that $(SI) \Rightarrow$ (LI) if F is uniformly isometric to $F \times F$ in a way which we shall later clarify (Definition 4.5). The condition we need on F is satisfied for most familiar Banach spaces (e.g. $l_p, L_p[0, 1], (1 \le p \le \infty), C[0, 1])$.

Sections 2 and 3 are devoted to a basic study of properties (SI) and (LI) respectively. In 5 we relate our work here with that of other authors and state some problems.

2. Series immersion.

DEFINITION 2.1. A normed space E is said to be series immersed in a normed space F if the following statement holds:

(SI) For each absolutely divergent series $\sum_n x_n(\sum_n ||x_n|| = \infty)$ in *E* there is a continuous linear mapping *T* from *E* into *F* such that $\sum_n Tx_n$ diverges absolutely.

If E is series immersed in F then each subspace of E is also. An easy perturbation argument shows that E the completion of E is also series immersed in F.