ON THE EXISTENCE OF STRONG LIFTINGS IN SECOND COUNTABLE TOPOLOGICAL SPACES

SIEGFRIED GRAF

Let X be a second countable topological space, \mathfrak{A} a σ -field of subsets of X containing all open sets and μ a finite positive measure on \mathfrak{A} , such that (X, \mathfrak{A}, μ) is a complete measure space and $\mu(U) > 0$ for every nonempty open $U \subset X$.

Then there exists a lifting $\phi : \mathfrak{A} \to \mathfrak{A}$ which satisfies $U \subset \phi(U)$ for every open subset $U \subset X$.

Basic notations and definitions. Throughout this paper N denotes the nonnegative integers and \mathbf{R}_+ the nonnegative real numbers. Moreover

X is a second countable topological space ($\neq \emptyset$),

 \mathfrak{A} is a σ -field of subsets of X containing all open sets,

 $\mu : \mathfrak{A} \to \mathbf{R}_+$ is a countable additive measure, satisfying $\mu(U) > 0$ for every nonempty open subset $U \subset X$.

For A, $B \in \mathfrak{A}$ we denote by $A \subseteq B$ the fact that $\mu(A \setminus B) = 0$ and write $A \sim B$ if $A \subseteq B$ and $B \subseteq A$.

A subset $\mathscr{F} \subset \mathfrak{A}$ is called an \cap -system iff $\mathscr{O} \in \mathscr{F}$, $X \in \mathscr{F}$ and $A \cap B \in \mathscr{F}$ for all $A, B \in \mathscr{F}$.

For an \cap -system $\mathscr{F} \subset \mathfrak{A}$ a mapping $\delta : \mathscr{F} \to \mathfrak{A}$ is a *partial* (lower) *density* iff it satisfies the following conditions:

(i) $A \sim B$ implies $\delta(A) = \delta(B)$

(ii) $A \sim \delta(A)$

(iii) $\delta(\emptyset) = \emptyset$ and $\delta(X) = X$

(iv) $\delta(A \cap B) = \delta(A) \cap \delta(B)$ for every $A, B \in \mathcal{F}$.

A mapping $\delta: \mathfrak{A} \to \mathfrak{A}$ with the above properties is called a (lower) density and if moreover

(v) $\delta(X \setminus A) = X \setminus \delta(A)$ for every $A \in \mathfrak{A}$ is fulfilled δ is a *lifting*.

A lifting or density $\delta: \mathfrak{A} \to \mathfrak{A}$ is called *strong* iff in addition

(vi) $U \subset \delta(U)$ for every open $U \subset X$.

Let us restate one of the fundamental properties of partial densities. For an \cap -system $\mathscr{F} \subset \mathfrak{A}$, a partial density $\delta : \mathscr{F} \to \mathfrak{A}$, and A, $B \in \mathscr{F}$ with $A \subseteq B$ we have $\delta(A) \subset \delta(B)$. In particular δ preserves inclusions.