THE BRAUER GROUP OF POLYNOMIAL RINGS

F. R. DEMEYER

Let R be a commutative ring and S a commutative Ralgebra. The induced homomorphism $B(R) \rightarrow B(S)$ of Brauer groups is studied for the following choices of S. First, S = R/I where I is an ideal in the radical of R. Second, S = R[x] the ring of polynomials in one variable over R. Third, S = K the quotient field of R when R is a domain.

In [3] M. Auslander and O. Goldman introduced the Brauer group B(R) of a commutative ring R. If S is a commutative R-algebra there is a homomorphism $B(R) \rightarrow B(S)$ induced by the homomorphism from R to S. Some of the choices for S considered in [3] are S = R/I for an ideal I of R, or S = K the quotient field of R when R is a domain, or S = R[x] the ring of polynomials in one variable over R.

We observe here relationships between the homomorphisms of Brauer groups induced from these choices for S. We show that if I is an ideal in the radical of R and R is complete in its I-adic topology then $B(R) \cong B(R/I)$. This answers a question raised in [11]. If I is a nil ideal in R then $B(R) \cong B(R/I)$. If R[[x]] is the ring of formal power series over R then $B(R[[x]]) \cong B(R)$. If we assume R is a domain with quotient field K an algebraic number field and t_1, \dots, t_n are indeterminates the homomorphism $B(R[t_1, \dots, t_n]) \rightarrow$ $B(K(t_1, \dots, t_n))$ is a monomorphism where $K(t_1, \dots, t_n)$ is the function field in *n*-variables over K. Let B'(R[x]) be the kernel of the natural homomorphism $B(R[x]) \rightarrow B(R)$ where x is an indeterminate. If R is a domain there is a procedure given in [13] for calculating B'(R[x])in terms of B'(R[x]) where \overline{R} is the integral closure of R. In [3] it is shown that B'(R[x]) = 0 if R is a regular domain of characteristic = We fill in the gap between these two results in the Noetherian 0. case.

If R is an integrally closed Noetherian domain, let Ref (R) denote the isomorphism classes of finitely generated reflexive R-modules Mwith End_R(M) projective over R and let Pro(R) be the projective elements in Ref (R). Under the multiplication $|M| \cdot |N| = |(M \otimes N)^{**}|$ Ref (R) is a monoid, Pro(R) is a submonoid and Ref (R)/Pro(R) is a group (see [6]). There is a split exact sequence.

 $0 \rightarrow \operatorname{Ref}'(R[x]) \rightarrow \operatorname{Ref}(R[x])/\operatorname{Pro}(R[x]) \rightarrow \operatorname{Ref}(R)/\operatorname{Pro}(R) \rightarrow 0$ where $\operatorname{Ref}'(R[x]) = \operatorname{Ref}(R[x])/(\operatorname{Pro}(R[x]) + \operatorname{Ref}(R))$. Utilizing results in [1] we show that the sequence.

 $0 \to \operatorname{Ref}'(R[x]) \to B'(R[x]) \to B'(K[x])$ is exact. If R is any von