THE BRAUER GROUP OF POLYNOMIAL RINGS

F. R. DeMeyer

Let R be a commutative ring and S a commutative R algebra. The induced homomorphism $B(R) \rightarrow B(S)$ of Brauer groups is studied for the following choices of S. First, $S=$ R / I where I is an ideal in the radical of R. Second, $S=$ $R[x]$ the ring of polynomials in one variable over R. Third, $S=K$ the quotient field of R when R is a domain.

In [3] M. Auslander and O. Goldman introduced the Brauer group $B(R)$ of a commutative ring R. If S is a commutative R-algebra there is a homomorphism $B(R) \rightarrow B(S)$ induced by the homomorphism from R to S. Some of the choices for S considered in [3] are $S=$ R / I for an ideal I of R, or $S=K$ the quotient field of R when R is a domain, or $S=R[x]$ the ring of polynomials in one variable over R.

We observe here relationships between the homomorphisms of Brauer groups induced from these choices for S. We show that if I is an ideal in the radical of R and R is complete in its I-adic topology then $B(R) \cong B(R / I)$. This answers a question raised in [11]. If I is a nil ideal in R then $B(R) \cong B(R / I)$. If $R[[x]]$ is the ring of formal power series over R then $B(R[[x]]) \cong B(R)$. If we assume R is a domain with quotient field K an algebraic number field and t_{1}, \cdots, t_{n} are indeterminates the homomorphism $B\left(R\left[t_{1}, \cdots, t_{n}\right]\right) \rightarrow$ $B\left(K\left(t_{1}, \cdots, t_{n}\right)\right)$ is a monomorphism where $K\left(t_{1}, \cdots, t_{n}\right)$ is the function field in n-variables over K. Let $B^{\prime}(R[x])$ be the kernel of the natural homomorphism $B(R[x]) \rightarrow B(R)$ where x is an indeterminate. If R is a domain there is a procedure given in [13] for calculating $B^{\prime}(R[x])$ in terms of $B^{\prime}(\bar{R}[x])$ where \bar{R} is the integral closure of R. In [3] it is shown that $B^{\prime}(R[x])=0$ if R is a regular domain of characteristic $=$ 0 . We fill in the gap between these two results in the Noetherian case.

If R is an integrally closed Noetherian domain, let Ref (R) denote the isomorphism classes of finitely generated reflexive R-modules M with $\operatorname{End}_{R}(M)$ projective over R and let $\operatorname{Pro}(R)$ be the projective elements in Ref (R). Under the multiplication $|M| \cdot|N|=\left|(M \otimes N)^{* *}\right|$ $\operatorname{Ref}(R)$ is a monoid, $\operatorname{Pro}(R)$ is a submonoid and $\operatorname{Ref}(R) / \operatorname{Pro}(R)$ is a group (see [6]). There is a split exact sequence.
$0 \rightarrow \operatorname{Ref}^{\prime}(R[x]) \rightarrow \operatorname{Ref}(R[x]) / \operatorname{Pro}(R[x]) \rightarrow \operatorname{Ref}(R) / \operatorname{Pro}(R) \rightarrow 0$ where $\operatorname{Ref}^{\prime}(R[x])=\operatorname{Ref}(R[x]) /(\operatorname{Pro}(R[x])+\operatorname{Ref}(R))$. Utilizing results in [1] we show that the sequence.
$0 \rightarrow \operatorname{Ref}^{\prime}(R[x]) \rightarrow B^{\prime}(R[x]) \rightarrow B^{\prime}(K[x])$ is exact. If R is any von

