ON SEMIGROUPS IN WHICH X = XYX = XZXIF AND ONLY IF X = XYZX

ZENSIRO GOSEKI

Recently M. S. Putcha and J. Weissglass ([4]) have given a characterization of a semigroup each of whose \mathcal{D} -classes has at most one idempotent. Using results in [4], this note gives also a characterization of a semigroup each of whose \mathcal{D} -classes is either idempotent free or consists of a single idempotent. Also, \mathcal{D} may be replaced by \mathcal{J} in the above statement.

Throughout this note S will denote a semigroup and E(S) the set of idempotents of S. Let the set-valued functions I and \bar{I} on S be defined by $I(x,S) = \{e \mid e \in E(S), e = exe\}$ and $\bar{I}(x,S) = \{y \mid y \in S, y = yxy\}$, respectively. We shall write E, I(x) and $\bar{I}(x)$ for E(S), I(x,S) and $\bar{I}(x,S)$, respectively, when there is no possibility of confusion.

Proposition 1. The following are equivalent.

- (1) $\bar{I}(x) \cap \bar{I}(y) = \bar{I}(xy)$ for every $x, y \in S$.
- (2) $I(x) \cap I(y) = I(xy)$ for every $x, y \in S$. In this case we have $\overline{I}(x) = I(x)$ for every $x \in S$.

Proof. (1) \Rightarrow (2) follows from $\bar{I}(x) \cap E = I(x)$ for every $x \in S$. (2) \Rightarrow (1). We will prove that $\bar{I}(x) = I(x)$ for every $x \in S$. Let $a \in \bar{I}(x)$. Then a = axa. Hence ax = (ax)(ax) = (ax)(ax)(ax). Thus $ax \in I(ax) = I(a) \cap I(x)$. Hence $ax \in I(a)$, i.e., ax = (ax)a(ax). Hence axa = (axa)(axa), i.e., $a = a^2$. Therefore $a \in \bar{I}(x) \cap E = I(x)$. Thus $\bar{I}(x) \subseteq I(x)$. Clearly $I(x) \subseteq \bar{I}(x)$. Hence $\bar{I}(x) = I(x)$ for every $x \in S$.

PROPOSITION 2. Let N be the set of elements x of S such that $\bar{I}(x) = \emptyset$. If N is nonempty then N is an ideal of S and idempotent free.