ON SEMIGROUPS IN WHICH $X=X Y X=X Z X$ IF AND ONLY IF $X=X Y Z X$

Zensiro Goseki

Abstract

A semigroup S will be called quasi-rectangular if the set of idempotents of S is non-empty and a rectangular band ideal of S. The theorems of this note prove in part that the following are equivalent. (1) S is a semilattice of semigroups each of which is either idempotent free or quasi-rectangular. (2) Every \mathscr{g}-class of S is either idempotent free or a rectangular subband of S. (3) Every \mathscr{D}-class of S is either idempotent free or a rectangular subband of S. (4) S is a semigroup in which for any $x, y, z \in S, x=x y x=x z x$ if and only if $x=x y z x$.

Recently M. S. Putcha and J. Weissglass ([4]) have given a characterization of a semigroup each of whose \mathscr{D}-classes has at most one idempotent. Using results in [4], this note gives also a characterization of a semigroup each of whose \mathscr{D}-classes is either idempotent free or consists of a single idempotent. Also, \mathscr{D} may be replaced by \mathscr{g} in the above statement.

Throughout this note S will denote a semigroup and $E(S)$ the set of idempotents of S. Let the set-valued functions I and \bar{I} on S be defined by $I(x, S)=\{e \mid e \in E(S), e=e x e\}$ and $\bar{I}(x, S)=\{y \mid y \in S, y=y x y\}$, respectively. We shall write $E, I(x)$ and $\bar{I}(x)$ for $E(S), I(x, S)$ and $\bar{I}(x, S)$, respectively, when there is no possibility of confusion.

Proposition 1. The following are equivalent.
(1) $\bar{I}(x) \cap \bar{I}(y)=\bar{I}(x y)$ for every $x, y \in S$.
(2) $I(x) \cap I(y)=I(x y)$ for every $x, y \in S$.

In this case we have $\bar{I}(x)=I(x)$ for every $x \in S$.
Proof. (1) \Rightarrow (2) follows from $\bar{I}(x) \cap E=I(x)$ for every $x \in S$.
(2) \Rightarrow (1). We will prove that $\bar{I}(x)=I(x)$ for every $x \in S$. Let $a \in \bar{I}(x)$. Then $a=a x a$. Hence $a x=(a x)(a x)=(a x)(a x)(a x)$. Thus $a x \in I(a x)=I(a) \cap I(x)$. Hence $a x \in I(a)$, i.e., $a x=(a x) a(a x)$. Hence $a x a=(a x a)(a x a)$, i.e., $a=a^{2}$. Therefore $a \in \bar{I}(x) \cap E=I(x)$. Thus $\bar{I}(x) \subseteq I(x)$. Clearly $I(x) \subseteq \bar{I}(x)$. Hence $\bar{I}(x)=I(x)$ for every $x \in S$.

Proposition 2. Let N be the set of elements x of S such that $\bar{I}(x)=\varnothing$. If N is nonempty then N is an ideal of S and idempotent free.

