ON THE GROUPS OF UNITS IN SEMIGROUPS OF PROBABILITY MEASURES

John Yuan

Abstract

We generalize Pym's decomposition $w=\mu_{E} * w_{H} * \mu_{F}$ of idempotent probability measures to the decomposition $\mu_{E} * \mathscr{H}\left(w_{H}\right) * \mu_{F}$ of the maximal groups of units in semigroup of probability measures on a compact semitopological semigroup. We also prove that $\mathscr{H}(w) \cong \mathscr{H}\left(w_{H}\right) \cong N(H) / H$ algebraically and topologically. With these characterizations, we verify Rosenblatt's necessary and sufficient condition for the convergence of a convolution sequence $\left(\nu^{n}\right)_{n \geqq 1}$ of a probability measure ν on a compact topological semigroup.

1. Introduction. Let S denote a compact semitopological semigroup (i.e., the multiplication is separately continuous) and $(C(S),\| \|)$ the Banach space of all bounded real-valued continuous functions on S. Then $M^{b}(S)$ which is defined as the norm dual of $C(S)$ is a Banach algebra under $\|\mu\|=\sup \{|\mu(f)|:\|f\| \leqq 1\}$ and the convolution * which is defined via $\mu^{*} \nu(f)=\int f(x y) \mu(d x) \nu(d y)$ on $C(S)$. Let $P(S)$ be the totality of probability measures on S, which consists of all positive measures with norm 1 in $M^{b}(S)$. Then $P(S)$ is a compact semitopological semigroup under * and the weak* topology which is the topology of pointwise convergence on $C(S)$ [4]. If S is topological (i.e., the multiplication is jointly continuous), then $P(S)$ is topological (Prop. 4, [9]).

It is known that every compact semitopological semigroup has a minimal ideal which is not necessarily closed except in the case S is topological [7]. We thus introduce the following definition:

A compact semitopological semigroup is called topologically simple if its minimal ideal is dense in it.

For a subsemigroup T of S, we use $E(S)$ and $M(T)$ to denote the totality of idempotents and the minimal ideal in S respectively. For a subsemigroup A of $P(S)$, we write $D(A)=\cup\{\operatorname{supp} \mu: \mu \in A\}$ and $\operatorname{supp} A=$ $\overline{D(A)}$, where supp μ denotes the support of μ.

In the remainder, S will always denote a compact semitopological semigroup except mentioned especially.

