CONVOLUTION MULTIPLIERS AND DISTRIBUTIONS

Árpád Száz

In this paper, in a purely algebraic way, Schwartz distributions in several variables are generalized in accordance with their homomorphism interpretation proposed by R. A. Struble.

0. Introduction. R. A. Struble in [10] has shown that Schwartz distributions can be characterized simply as mappings, from the space \mathcal{D} of test functions into the space \mathcal{E} of smooth functions, which commute with ordinary convolution. This new view of distributions has turned out to be very useful [11, 12] and motivated us to give a simple generalization for distributions which is closely related to Mikusiński operators and convolution quotients of other types [11, 12, 4, 13]. The method employed here is an appropriate modification of a general algebraic method [5, 2, 8].

Mappings which commute with convolution are called convolution multipliers here. (Distributions can be characterized as convolution multipliers, Mikusiński operators themselves are convolution multipliers.)

In \$1, convolution multipliers from various subsets of \mathscr{D} into \mathscr{C} are discussed. We are primarily concerned with their maximal extensions.

In \$2, a module \mathfrak{M} of certain maximal convolution multipliers is constructed and investigated from an algebraic point of view.

In §3, Schwartz distributions are embedded and characterized in \mathfrak{M} . For example, we prove that distributions are the only continuous elements of \mathfrak{M} . Finally, we show that there are elements in \mathfrak{M} which are not distributions.

To illustrate the appropriateness of our generalizations, we refer to the following facts:

One of the difficulties in working with Schwartz distributions is that only distributions Λ satisfying $\Lambda * \mathcal{D} = \mathcal{D}$ are invertible in \mathcal{D}' . Whereas, distibutions Λ satisfying $\Lambda * \mathcal{D} \subset \mathcal{D}$ such that $\Lambda * \mathcal{D}$ has no proper annihilators in \mathscr{C} are invertible in \mathfrak{M} . (The heat operator in two dimensions [1] seems to be a distribution which is not invertible in \mathcal{D}' , but is invertible in \mathfrak{M} .)

There are regular Mikusiński operators [1] which are not distributions. Whereas, normal Mikusiński operators [11] can be embedded in \mathfrak{M} .

1. Convolution multipliers and their maximal extensions. Let k be a fixed positive integer, \mathbf{R}^k be the k-dimensional Euclidean space and C be the field of complex numbers.