BROWNIAN MOTION AND SETS OF MULTIPLICITY

ROBERT KAUFMAN

X(t) is Brownian motion on the axis $-\infty < t < \infty$, with paths in \mathbb{R}^n , $n \ge 2$. X(t) leads to composed mappings $f \circ X$, where f is a real-valued function of class $\Lambda^{\alpha}(\mathbb{R}^n)$, whose gradient never vanishes. To define the class $\Lambda^{\alpha}(\mathbb{R}^n)$, when $\alpha > 1$, take the integer p in the interval $\alpha - 1 \le p < \alpha$ and require that f have continuous partial derivatives of orders $1, \dots, p$ and these fulfill a Lipschitz condition in exponent $\alpha - p$ on each compact set; to specify further that grad $f \ne 0$ throughout \mathbb{R}^n , write Λ^{α}_+ . Then a closed set T is a set of " Λ^{α} -multiplicity" if every transform $f(T) \subseteq \mathbb{R}^1(f \in \Lambda^{\alpha}_+)$ is a set of strict multiplicity an M_0 -set (see below). Henceforth we define $b = \alpha^{-1}$ and take S to be a closed linear set.

THEOREM 1. In order that X(S) be almost surely a set of Λ^{α} -multiplicity, it is sufficient that the Hausdorff dimension of S exceed b. It is not sufficient that dim S = b.

An M_0 -set in R is one carrying a measure $\mu \neq 0$ whose Fourier-Stieltjes transform vanishes at infinity; the theory of M_0 -sets is propounded in [1, p. 57] and [8, pp. 344, 348, 383] and Hausdorff dimension is treated in [1, II—III]. Theorem 1 reveals a difference between multi-dimensional Brownian motion and the linear process; for linear paths the critical point is dim $S = \frac{1}{2}b$ [5]. Theorem 2 below contains a sharper form of the sufficiency condition.

THEOREM 2. Let S be a compact set, carrying a probability measure μ for which

$$h(u) \equiv \sup \mu(x, x + u) = o(u^b) \cdot |\log u|^{-1}.$$

Then X(S) is almost surely a set of Λ^{α} -multiplicity.

1. (Proof of Theorem 2) We can assume that S is mapped by X entirely within some fixed ball B in \mathbb{R}^n and that all elements f appearing below are bounded in Λ^{α} -norm over B (defined in analogy with the norms in Banach spaces of Lipschitz functions). Moreover we can assume that all gradients fulfill an inequality $\|\nabla\| \ge \delta > 0$ on all of B, and even on all of \mathbb{R}^n .