A NOTE ON STARSHAPED SETS

P. R. Goodey

Abstract

If S is a compact subset of R^{d}, it is shown that S is starshaped if and only if S is nonseparating and the intersection of the stars of the (d-2)-extreme points of S is nonempty.

Let $S \subset R^{d}$. The (d-2)-extreme points of S are by definition those points of S such that if $D \subset S$ is a (d-1)-dimensional simplex then $x \notin$ relint D (the relative interior of D). The totality of ($d-2$)-extreme points of S is denoted by $E(S)$. For each $y \in S$ we define $S(y)$, the star of y by $S(y)=\{z:[y, z] \subset S\}$, where $[y, z]$ denotes the closed line segment from y to z. S is said to be starshaped if $\operatorname{Ker} S \neq \varnothing$ where $\operatorname{Ker} S=\{S(y): y \in S\}$. In [2] it is shown that if S is a compact starshaped set in R^{d} then $\operatorname{Ker} S=\bigcap\{S(y): y \in E(S)\}$. Thus the following question arises: if S is such that $\bigcap\{S(y): y \in E(S)\} \neq \varnothing$, under what hypothesis is S starshaped? It is clearly desirable that the hypothesis should be as weak as possible in order to indicate to what extent $\bigcap\{S(y): y \in E(S)\} \neq \varnothing$ implies that S is starshaped. In [3] it is shown that one suitable hypothesis is that S should have the halfray property, that is, for any point x in $R^{d} \backslash S$ there is a half-line l with vertex x such that $l \cap S=\varnothing$. Now we note that this hypothesis is a rather strong one especially as it is being used to deduce the fact that a certain set is starshaped. Thus one suspects that a much weaker hypothesis might suffice. This suspicion is further strengthened by the example given in [3] to show that, in fact, some hypothesis is necessary. More precisely, the example given is a separating set that is, its complement is not connected. The purpose of this note is to prove the following

Theorem. If $S \subset R^{d}$ is a nonseparating compact set and $\bigcap\{S(y): y \in E(S)\} \neq \varnothing$, then S is starshaped.

Proof. Let $z \in \bigcap\{S(y): y \in E(S)\}$. We shall show that for any x in $R^{d} \backslash S, l(x, z) \cap S=\varnothing$ where $l(x, z)$ is the half-line with vertex x which does not contain z but is such that the line containing $l(x, z)$ does contain z. Clearly this suffices to show that S is starshaped.

Choose x_{0} in the complement of the convex hull of S, then $l\left(x_{0}, z\right) \cap S=\varnothing$. Now since S is a nonseparating compact set, its complement is a path-connected unbounded open set (see [1, p. 356]). Thus any point in $R^{d} \backslash S$ can be "joined" to x_{0} by a finite polygonal path in $R^{d} \backslash s$ such that if t is any segment of the path then the line

