THE POLYNOMIAL HULLS OF CERTAIN SUBSETS OF C^2

T. W. GAMELIN

Summary. Fix $\alpha \leq 0$. We will describe the polynomial hulls of compact subsets of C^2 that are invariant under the transformations T_{θ} , $0 \leq \theta \leq 2\pi$, defined by

(0.1)
$$T_{\theta}(z,w) = (e^{i\theta}z, e^{i\alpha\theta}w), \qquad (z,w) \in C^2.$$

1. Introduction. Let X be a compact subset of C^2 . In [10], J. Wermer describes the polynomial hull \hat{X} of X, for a certain class of sets X which are invariant under the one-parameter group of transformations

(1.1)
$$(z, w) \longrightarrow (e^{i\theta}z, e^{-i\theta}w), \qquad 0 \leq \theta \leq 2\pi.$$

He develops an idea for introducing analytic structure in $\hat{X} \setminus X$, and he shows in particular that every point of $\hat{X} \setminus X$ lies on an analytic disc in \hat{X} .

Our aim is to combine Wermer's ideas with some elementary results in potential theory, in order to describe the polynomial hull \hat{X} of an arbitrary compact subset X of C^2 invariant under the group (1.1), or more generally under the transformations defined by (0.1).

If the number α is irrational, then the transformation group defined by (0.1) is dense in the two-parameter group of transformations

(1.2)
$$(z, w) \longrightarrow (e^{i\theta}z, e^{i\varphi}w), \qquad 0 \leq \theta, \varphi \leq 2\pi.$$

If X is invariant under the group (0, 1), then X is also invariant under the groups (1.2). Such sets are said to be *circled*. The description of the polynomial hull of compact circled sets is classical ([6], [2], [3], [4, §III. 3], [7, §2.4], [9, §14]). We may confine our attention to the case in which α is rational.

Consider next the case $\alpha = 0$. The transformations (0.1) then assume the form

(1.3)
$$(z, w) \longrightarrow (e^{i\theta}z, w)$$
, $0 \leq \theta \leq 2\pi$.

If X is invariant under the transformations (1.3), its polynomial hull can be described as follows [9]. Let J be the projection of X into the w-plane, and define

$$r(w) = \sup \{ |z| : (z, w) \in X \}, \qquad w \in J.$$

Define a function R on the polynomial hull \hat{J} of J by requiring that log R be the lower envelope of the family of functions u which are