NORMAL HYPERSURFACES

JOSEPH BECKER

The purpose of this note is to give a simple analytic proof of a theorem of Oka: If V is a complex analytic hypersurface whose singular locus has codimension at least two, then V is normal. In other words, every weakly holomorphic function is holomorphic.

This result has since been generalized by Abhankar and Thimm to the case when V is an algebraic complete intersection (which is to say that the ideal of functions holomorphic in the ambient space vanishing on V is generated by k functions, where k is the codimension of V in the ambient space).

Actually we prove a slightly stronger result than Oka's.

THEOREM. Let V be a complex analytic hypersurface, A a complex analytic subset of V with codimension at least 2. Then there is a bounded linear operator $\phi: \mathscr{O}(V-A) \to \mathscr{O}(V)$ such that $\phi(f) \mid V - A = f$.

Proof. Suppose $V \subset C^n$ and the projection $\pi: C^n \to C^{n-1}$ to the first n-1 co-ordinates gives an *r*-sheeted branched cover of *V* in some neighborhood of the origin with branch set *B*, $B' = \pi(B)$, $A' = \pi(A)$ and $z' = \pi(z)$. Now π induces a homomorphism $_{n-1}\mathcal{O} \to _{n}\mathcal{O}/I(V) = \mathcal{O}(V)$ making $\mathcal{O}(V)$ into a finitely generated \mathcal{O}_{n-1} module with generators 1, z_n, \dots, z_n^{r-1} . Let $P(z', z_n)$ be the minimal degree polynomial for z_n over $_{n-1}\mathcal{O}$; for any $f \in \mathcal{O}(V)$ by the Weierstrass division theorem we have f = QP + R where $R \in _{n-1}\mathcal{O}[z_n]$ is a holomorphic polynomial of 'degree $\leq r-1$. Hence f can be written as $\sum_{i=0}^{r-1} b_i(z') z_n^{r-i-1} \mod I(V)$. However the $b_i(z')$'s are unique.

For every $z' \notin B'$, let $\alpha_1(z'), \dots, \alpha_r(z')$ be the values of z_n on the fiber $\pi^{-1}(z)$ and $f_j = f(z', \alpha_j(z'))$ for $j = 1, \dots, r$. Then

$$f_j = \sum_{i=0}^{r-1} b_i(z') \alpha_j(z')^{r-i-1}$$
 .

These equations can be viewed as a system of r linear equations in the r unknowns $b_i(z')$ and solved by Cramer's rule:

$$b_i(z') = \frac{\det\left[1, \alpha_j, \alpha_j^2, \cdots, \alpha_j^{r-i-2}, f_j, \alpha_{ij}^{r-i}, \cdots, \alpha_j^{r-1}\right]}{\det\left[1, \alpha_j, \cdots, \alpha_j^{r-1}\right]}$$

where in both determinants the entries in the *j*th row are indicated. The denominator is the Vandermonde determinant $\Delta(\alpha_1, \dots, \alpha_r)$ and