PROPERTIES OF MARTINGALE-LIKE SEQUENCES

R. James Tomkins

Abstract

The purpose of this paper is to define a new type of stochastic sequence and to explore its properties. These new sequences of random variables, called eventual martingales, generalize the concept of a martingale.

Several known results concerning the almost sure limiting behavior of martingales are shown to remain valid for eventual martingales. In addition, eventual martingales are compared with three other martingale-like sequences.

Consider a probability space (Ω, \mathscr{F}, P). A stochastic sequence ($X_{n}, \mathscr{F}_{n}, n \geqq 1$) will be called an eventual martingale if and only if (iff)
(1) $P\left[E\left(X_{n} \mid \mathscr{F}_{n-1}\right) \neq X_{n-1}\right.$ infinitely often (i.o.) $]=0$.

This says, in effect, that, except on an event of probability zero, the martingale property $E\left(X_{n} \mid \mathscr{F}_{n-1}\right)=X_{n-1}$ holds for all sufficiently large n. In view of the Borel-Cantelli lemma, $\left(X_{n}, \mathscr{F}_{n}, n \geqq 1\right)$ is an eventual martingale if $\sum_{n=1}^{\infty} P\left[E\left(X_{n} \mid \mathscr{F}_{n-1}\right) \neq X_{n-1}\right]<\infty$; in particular, every martingale is an eventual martingale.

In §2, a decomposition theorem for eventual martingales will be established and used to generalize some known martingale results. Section 3 will explore the relationship among eventual martingales and three other generalizations of martingales.

Assume throughout that \mathscr{F}_{0} is the trivial sigma-field. Let $I(A)$ denote the indicator function of an event $A \in \mathscr{F}$.
2. A decomposition theorem. Crucial to the considerations of this section is the following result.

Theorem 1. Let $\left(X_{n}, \mathscr{F}_{n}, n \geqq 1\right)$ be an eventual martingale. Then there exist stochastic sequences $\left(M_{n}, \mathscr{F}_{n}, n \geqq 1\right)$ and $\left(Z_{n}, \mathscr{F}_{n}\right.$, $n \geqq 1$) such that (i) $X_{n}=M_{n}+Z_{n}$ for all $n \geqq 1$, (ii) ($M_{n}, \mathscr{F}_{n}, n \geqq 1$) is a martingale, and (iii) $P\left[Z_{n+1} \neq Z_{n}\right.$ i.o. $]=0$.

Proof. Let $d_{1}=X_{1}$ and, for $n \geqq 1$, let $d_{n+1}=X_{n+1}-X_{n}$. If $n \geqq 1$, let $M_{n}=\sum_{k=1}^{n} d_{k} I\left(E\left(d_{k} \mid \mathscr{F}_{k-1}\right)=0\right)$ and $Z_{n}=X_{n}-M_{n}$. Then (i) and (ii) are obvious. Moreover, $Z_{n+1}-Z_{n}=d_{n+1} I\left(E\left(d_{n+1} \mid \mathscr{F}_{n}\right) \neq 0\right)$ so $\left[Z_{n+1} \neq Z_{n}\right] \leqq\left[E\left(d_{n+1} \mid \mathscr{F}_{n}\right) \neq 0\right]$. Hence $0 \leqq P\left[Z_{n+1} \neq Z_{n}\right.$ i.o. $] \leqq$ $P\left[E\left(d_{n+1} \mid \mathscr{F}_{n}\right) \neq 0\right.$ i.o. $]=0$ by (1).

Remark. Let $B=\left[Z_{n+1} \neq Z_{n}\right.$ i.o.]. Theorem 1 (iii) says that,

