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EQUATIONS WITH LAPLACIAN PRINCIPAL PART
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i f θ ^ p < σ - l , there is a one-to-one correspondence between
entire C2 solutions of (*) whose gradients grow no faster than
O( |JC| P ) , and harmonic polynomials with gradients of the
same growth. For (I) therefore solutions whose gradients
grow no faster than O(\x\p) form a finite dimensional vector
space. These results for (I) give analogues to the concept of
"generating pairs" in pseudo-analytic function theory.

1. Introduction. In the case n = 2, (I) takes the form

(1.1) Ψxx + ψyy

 = bxφx + b2φy.

If we make the identifications w = ψx - iφy, A = (bι + ib2)/4, B =
(b{ - ib2)/4, then w satisfies the complex equation

(1.2) | | = Aw+Bw

where
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Thus (1.1) can be studied alternatively by considering the complex
equation (1.2), the solutions of which are known as "pseudo-analytic
functions," and for which an extensive theory has been developed (see
for example the treatments of Befs and Vekua in [1] and [8]). In
particular it is known that entire and bounded solutions of (1.2) form a
two-dimensional real vector space, and a basis for this vector space is
called a "generating pair." In dimensions higher than two the
reduction of (I) to a first order, complex equation- is no longer
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