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SOME MAPPINGS WHICH DO NOT ADMIT
AN AVERAGING OPERATOR

Joun WARREN BAKER AND R. C. LACHER

The problem of determining for spaces X and Y necessary
and sufficient conditions such that there exists a map ¢ of X
onto Y which does not admit an averaging operator is
considered. This corresponds to identifying the uncom-
plemented closed selfadjoint subalgebras of C(X) which contain
1x. Mappings ¢ of X onto Y are constructed which do not
admit averaging operators, for example, when X is any uncount-
able compact metric space and Y is any countable product of
intervals. Also, X can be any space containing an open set
homeomorphic to a Banach space and Y = X. These results
generalize earlier work by D. Amir and S. Ditor.

If ¢ is a mapping of X onto Y, the induced operator ¢° from C(Y)
to C(X) that takes f € C(Y) to fo ¢ € C(X) is a multiplicative isometric
isomorphism. In case ¢ is a quotient map (e.g., if X and Y are compact
Hausdorff spaces) then ¢°(C(Y)) consists of all functions in C(X) which
are constant on each point inverse of ¢. We say ¢ admits an averaging
operator if there is a projection of C(X)onto ¢°(C(Y)). Itis easily seen
that ¢ admits an averaging operator if and only if there exists a bounded
linear operator u from C(X) into C(Y) such that u¢’(f) = f for each
f € C(Y) (see [12], Cor. 3.2), and in this case u is called an averaging
operator for ¢.

Following the appearance of the monograph by A. Pelczynski on
averaging and extension operators [12], there has been much interest in
the study of averaging operators (e.g., see [2], [3], [4], [5], [6], [15]). A
central problem in this study, known as the complemented subalgebra
problem, is to determine necessary and sufficient conditions for a map ¢
from a compact Hausdorff space X onto a compact Hausdorff space Y to
admit an averaging operator. Strong necessary conditions have been
established in [5]. (Also, see [2] and [3].) Two closely related prob-
lems are to determine for compact Hausdorff spaces X and Y necessary
and sufficient conditions that there exists a map ¢ of X onto Y which (1.
admits; 2. does not admit) an averaging operator. Since this corres-
ponds to determining the complemented and uncomplemented closed
selfadjoint subalgebras of C(X) which contain 1x by Stone’s Theorem
[14, p. 122], results of this type yield information about the structure of
C(X).

In 1968, S. Ditor established that there is a map ¢ of [0, 1] onto itself
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