UNIQUENESS THEOREMS FOR TAUT SUBMANIFOLDS

Michael Freedman

1. Introduction and statements of theorems. Given two closed smooth manifolds, how do you tell if they are diffeomorphic? If you start out with a homotopy equivalence, Browder-Novikoff Theory breaks the problem up into: (1) finding all self-equivalences, (2) finding a normal bordism, and (3) the surgery obstruction on the normal bordism. In applications, however, one may encounter manifolds suspected of being diffeomorphic, where no obvious homotopy equivalence is present.

We describe such a situation: Let \int_{M}^{ζ} be a simply connected, finite, simplicial complex with linear bundle. Let $K_{t}^{2 n} \xrightarrow{f_{i}} M, i=0$ or $1, n \geqq 3$, be normal maps from closed smooth manifolds, i.e. $f_{i}^{*}(\zeta)=\nu\left(K_{i}\right)$: Suppose that f_{1} and f_{2} are normally bordant, f_{i} is n-connected, and that $B_{n}\left(K_{0}\right)=B_{n}\left(K_{1}\right) . B_{n}$ here denotes the n-th Betti number. It follows from Poincaré's Duality and the universal coefficient theorem that K_{0} and K_{1} have isomorphic integral homology groups, but a map inducing this isomorphism is lacking. However,

Theorem 1. If n is odd, K_{0} and K_{1} are diffeomorphic.
Theorem 2. If n is even, but not 2 , and the intersection pairings on
$\left(\operatorname{Ker} f_{0}: H_{n}\left(K_{0} ; Z\right) \rightarrow H_{n}(M ; Z)\right) /$ torsion and
$\left(\operatorname{Ker} f_{1}: H_{n}\left(K_{1} ; Z\right) \rightarrow H_{n}(M ; Z)\right) /$ torsion
are isometric and nonsingular, then K_{0} and K_{1} are diffeomorphic.
Corollary 1. If $M^{2 n+2}$ is a compact, simply connected, smooth $2 n+2$-manifold, n odd, and $K_{0}^{2 n} \xrightarrow{i_{0}} M^{2 n+2}$ and $K_{1}^{2 n} \xrightarrow{t_{1}} M^{2 n+2}$ are $n-$ connected inclusions of closed submanifolds with $i_{0} \cdot\left[K_{0}\right]=$ $i_{1} \cdot\left[K_{1}\right] \in H_{2 n}\left(M^{2 n+2} ; Z\right)$, then if $B_{n}\left(K_{0}\right)=B_{n}\left(K_{1}\right), K_{0}$ is diffeomorphic to K_{1}.

Corollary 2. Assume $M^{2 n+2}$ is a simply connected smooth $2 n+2$ manifold, n even $(n \neq 2)$, with $H_{n}(M ; Z)=0$. If i_{0} and i_{1} are as above, then if the intersection pairings on $H_{n}\left(K_{0} ; Z\right) /$ torsion and $H_{n}\left(K_{1} ; Z\right)$ /torsion are isometric, K_{1} is diffeomorphic to K_{2}.

REMARK 1. The above corollaries are specialized by replacing the

