SOLVABILITY OF CONVOLUTION EQUATIONS IN \mathcal{H}'_{p} , p > 1

S. SZNAJDER AND Z. ZIELEZNY

Let S be a convolution operator in the space \mathscr{K}'_p , p > 1, of distributions in \mathbb{R}^n growing no faster than $\exp(k |x|^p)$ for some k. A condition on S introduced by I. Cioranescu is proved to be equivalent to $S*\mathscr{K}'_p = \mathscr{K}'_p$.

We denote by \mathscr{K}'_p , p > 1, the space introduced in [4] and consisting of distributions in \mathbb{R}^n which "grow" no faster than $\exp(k|x|^p)$, for some k.

I. Cioranescu [1] characterized distributions with compact support, i.e. in the space \mathscr{C}' , having fundamental solutions in \mathscr{K}_p' . We recall that a distribution E is a fundamental solution for $S \in \mathscr{C}'$ if

$$S{*}E=\delta$$
 ,

where δ is the Dirac measure and * denotes the convolution. Cioranescu proved that, if S is a distribution in \mathscr{C}' and \hat{S} its Fourier transform, the following conditions are equivalent:

(a) There exist positive constants A, N, C such that

$$\sup_{x \, \in \, R^n, \, |x| \, \leq \, A[\log(2+|\xi|)]^{1/q}} \geq rac{C}{(1 \, + \, |\xi|)^N}, \, \xi \in R^n$$
 ,

where 1/p + 1/q = 1.

(b) S has a fundamental solution in \mathcal{K}'_{p} .

In this paper we study the solvability of convolution equations in \mathscr{K}'_p . If $\mathscr{O}'_c(\mathscr{K}'_p:\mathscr{K}'_p)$ is the space of convolution operators in \mathscr{K}'_p , we ask the question: Under what condition on $S \in \mathscr{O}'_c(\mathscr{K}'_p:\mathscr{K}'_p)$ is $S*\mathscr{K}'_p = \mathscr{K}'_p?$ The last equation means that the mapping $u \to S*u$ of \mathscr{K}'_p into \mathscr{K}'_p is surjective.

We prove the following theorem which extends the results of Cioranescu mentioned above.

THEOREM. If S is a distribution in $\mathcal{O}'_{\mathcal{C}}(\mathscr{K}'_{p}:\mathscr{K}'_{p})$ then each of the conditions (a) and (b) is equivalent to each of the following ones: (a) There exist positive constants A', N', C' such that

$$\sup_{z \, \in \, C^n, |z| \leq A' [\log(2+|\xi|)]^{1/q}} \geq rac{C'}{(1+|\xi|)^{N'}} \; ; \;\;\; \xi \in R^n$$
 ,

where 1/p + 1/q = 1. (c) $S * \mathscr{K}'_{p} = \mathscr{K}'_{p}$.