ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF RETARDED DIFFERENTIAL DIFFERENCE EQUATIONS

J. C. LILLO

The asymptotic behavior of the solutions of nonautonomous n^{th} order linear retarded differential difference equations is studied in this paper. It is shown that if the coefficients satisfy certain restrictions, then for any real K there exists a finite dimensional subspace F(K) of the solution space having the following property. For any solution x of the equation one has for all t > 0 that $x(t) = x_K(t) + x_r(t)$ where x_k belongs to F(K) and $x_r(t) = 0$ (exp (-Kt)) as $t \to \infty$. As in the author's earlier papers, considering the periodic and almost periodic cases, the spaces F(K) are obtained by treating the nonautonomous equation as a perturbation of an n^{th} order autonomous equation.

1. Introduction and notation. We consider perturbations of the autonomous n^{th} order equation

(1.1)
$$L_0(x(t)) = x^{(n)}(t) + \sum_{k=0}^m \sum_{k=0}^{l(k)} c_{lk} x^{(l)}(t - d_k) = 0$$

where $0 = \Delta_0 < \Delta_1 < \Delta_m$ and the c_{lk} , for all pairs (l, k) occurring in (1.1), are real numbers. We assume $m \ge 1$. We also assume that l(0) < n and that l(k) < n, $c_{l(k)k} \ne 0$ for $k = 1, \dots, m$. The perturbed equations will be of the form

(1.2)
$$L_0(x(t)) = D(x(t))$$

where

(1.3)
$$D(x(t)) = \sum_{h=0}^{V} \sum_{g=0}^{g(h)} q_{gh}(t) x^{(g)}(t - \sigma_h) .$$

Here it is assumed that the q_{gh} belong to $C^{2n}(-\infty,\infty)$ and there exists an $M_{_1}>0$ such that

(1.4)
$$|q_{gh}^{(j)}(t)| \leq M_1$$

for $t \in (-\infty, \infty)$, $j \leq 2n$, and $(g, h) \in B$, where B denotes the set of all prives (g, h) in (1.3) for which $q_{gh}(t) \neq 0$.

In earlier papers, the author has established, in the cases where the coefficients q_{gh} are periodic [6] or almost periodic [7], that for K > 0 and sufficiently large there exist finite dimensional solution spaces F(K) of (1.2) possessing the following properties. Any so-