PERIODIC JACOBI-PERRON ALGORITHMS AND FUNDAMENTAL UNITS

NAMBURY S. RAJU

In this paper the author states a class of infinitely many real cubic fields for which the Jacobi-Perron algorithm of a properly chosen vector becomes periodic and calculates explicitly a fundamental unit for each field. The main results of this paper are: Let $m = a^6 + 3a^3 + 3$, $\omega = \sqrt[3]{m}$, m cube free $a \in N$; then the Jacobi-Perron algorithm of $a^{(0)} = (\omega, \omega^2)$ is periodic. The length of the primitive preperiod is four and the length of the primitive period is three. A fundamental unit in $Q(\omega)$ is given by $e = a^3 + 1 - a\omega$.

1. Introduction. The Jacobi algorithm [9] which was generalized by Perron [11] for any dimension $n \ge 3$ proceeds as follows. Let $a^{(0)}$ be a vector in R_{n-1} ; then the sequence $\langle a^{(v)} \rangle$ is called the Jacobi-Perron algorithm, if, for $a^{(v)} = (a_1^{(v)}, \dots, a_{n-1}^{(v)}), (v = 0, 1, \dots)$

$$a^{(v+1)} = \frac{1}{a_1^{(v)} - b_1^{(v)}} (a_2^{(v)} - b_2^{(v)}, \dots, a_{n-1}^{(v)} - b_{n-1}^{(v)}), \ (b_1^{(v)} \neq a_1^{(v)}; \ v = 0, 1, \dots)$$

(1.1)
$$b_1^{(v)} = [a_1^{(v)}], \qquad (i = 1, \dots, n-1; \ V = 0, 1, \dots).$$

For notation see Bernstein's book [7, pp. 11-18].

The Jacobi-Perron algorithm of a vector $Q^{(0)} \in R_{n-1}$ is called periodic, if there exist two rational integers L and M, $L \ge 0$, $M \ge 1$, such that

(1.2)
$$a^{(M+V)} = a^{(V)}, \quad (V = L, L + 1, \cdots).$$

If min L = l, min M = m, then the sequence of vectors

$$(1.3) a^{(0)}, a^{(1)}, \cdots, a^{(L-1)}$$

is called the primitive preperiod of the Jacobi-Perron algorithm, and the sequence of vectors

(1.4)
$$a^{(L)}, a^{(L+1)}, \cdots, a^{(L+M-1)}$$

is called primitive period. The l and m are called respectively the lengths of the primitive preperiod and period. If l = 0, the algorithm is said to be purely periodic. By definition, from any periodic Jacobi-