HOMOTOPIES AND INTERSECTION SEQUENCES

J. R. Quine

Abstract

For $\gamma_{t}: S^{1} \rightarrow \mathbf{C}$, a smooth homotopy of closed curves, the changing configuration of vertices and cusps is studied by considering the set in $I \times S^{1} \times S^{1}$ given by $\left(\gamma_{t}(z)-\gamma_{t}(\zeta)\right) /(z-\zeta)=0$. The main tool is oriented intersection theory from differential topology. The results relate to previous work by Whitney and Titus on normal curves and intersection sequences.

Consider a closed curve as a smooth map $\gamma: S^{1} \rightarrow \mathbf{C}$. Let γ_{t} for $t \in I$ be a smooth homotopy of closed curves. A vertex of γ_{t} is a point w such that $w=\gamma_{t}(z)=\gamma_{t}(\zeta)$ for $z \neq \zeta$. A cusp is a point where the tangent vanishes and changes direction. Let $X=I \times S^{1} \times S^{1}$. We study the changing configuration of vertices and cusps of γ_{t} by studying the set $Z=\{x \in X \mid G(x)=0\}$ where $G(t, z, \zeta)=\left(\gamma_{t}(z)-\gamma_{t}(\zeta)\right) /\left(z_{t}-\zeta\right)$, and the limiting value is taken when $z=\zeta$. If 0 is a regular value for G, then Z has the structure of an oriented 1 -submanifold of X. If for fixed t, Z intersects $t \times S^{1} \times S^{1}$ transversely, then the oriented intersection gives a set of pairs in $S^{1} \times S^{1}$ with corresponding orientation numbers +1 or -1. If γ_{t} is a normal immersion, these pairs and their orientation numbers give the Titus intersection sequence of γ_{t}. The changes in the intersection sequence are reflected in the behavior of Z. If Z crosses $I \times \Delta$, where Δ is the diagonal of $S^{1} \times S^{1}$, then we have a cusp and a change in the tangent winding number. The difference between the tangent winding numbers of γ_{0} and γ_{1} is just $N(Z, I \times \Delta)$, the total number of oriented intersections of Z with $I \times \Delta$.

1. Intersection sequences. In the complex plane, let S^{1} be the set $|z|=1$. Consider S^{1} as a 1 -manifold with functions $\theta \rightarrow e^{i \theta}$ giving local coordinate systems. The tangent vector $d / d \theta$ is defined independently of the choice of coordinate system. On $T\left(S^{1}\right)$, the tangent space, let $d / d \theta$ give the positive orientation at each point. This gives S^{1} the structure of an oriented 1-manifold.

Suppose $\gamma: S^{1} \rightarrow \mathbf{C}$ is a smooth $\left(C^{\infty}\right)$ map. Let $\beta(z)=(d \gamma / d \theta)(z)$ be the tangent at $\gamma(z)$. Let $S^{1} \times S^{1}=Y$ and let the maps $(\theta, \phi) \rightarrow\left(e^{i \theta}, e^{i \phi}\right)$ give local coordinate systems for Y. Let $S^{1} \times S^{1}$ have the product orientation, i.e., $T\left(S^{1} \times S^{1}\right)$ has positive orientation given by the ordered basis $\{\partial / \partial \theta, \partial / \partial \phi\}$ at each point. Let $\Delta \subseteq Y=\{(z, \zeta) \mid z=\zeta\}$.

Let $\theta \rightarrow\left(e^{i \theta}, e^{i \theta}\right)$ be local coordinate systems on Δ and let positive

