A HAHN DECOMPOSITION FOR LINEAR MAPS

RICHARD I. LOEBL

The question is studied whether every bounded self-adjoint linear map φ be tween two C*-algebras can be written as the difference of bounded positive linear maps. Such a decomposition is called a *Hahn decomposition* of φ .

THEOREM. Let X be an infinite compact Hausdorff space. Then there is a bounded, self-adjoint linear map, with domain C(X), that does not admit a Hahn decomposition.

A bounded linear map φ is said to have finite total variation if

$$\sup\left\{ \left|\left|\sum\limits_{i=1}^{n} \mid arphi(a_{i}) \mid
ight|: a_{i} \in \mathscr{A}, 0 \leq a_{i}, \sum a_{i} \leq 1
ight\} < \infty
ight.$$

THEOREM. If the domain is commutative, and if the range is a von Neumann algebra, then a sufficient condition for a selfadjoint map to admit a Hahn decomposition is that the map have finite total variation.

0. Introduction. It is a well-known theorem [4] that every linear functional τ on a C^* -algebra \mathscr{A} can be written $\tau = \tau_1 - \tau_2 + i(\tau_3 - \tau_4)$, where the τ_j are positive linear functionals. It is, therefore, natural to ask whether every bounded linear map φ between two C^* -algebras \mathscr{A} and \mathscr{B} admits a decomposition $\varphi = \varphi_1 - \varphi_2 + i(\varphi_3 - \varphi_4)$, where the φ_j are positive linear maps.

Given any bounded linear map φ , if we define the linear map $\tilde{\varphi}$ by $\tilde{\varphi}(a) = \varphi(a^*)^*$, it is easy to see that $|| \tilde{\varphi} || = || \varphi ||$, and that $\tilde{\varphi}$ is the natural "adjoint" map to φ . Hence, the map $\varphi_1 = (\varphi + \tilde{\varphi})/2$ is self-adjoint, i.e., $\varphi_1(a^*) = \varphi_1(a)^*$, as is $\varphi_2 = (\varphi - \tilde{\varphi})/2i$, and therefore φ can be written (uniquely) as $\varphi = \varphi_1 + i\varphi_2$, the usual combination of self-adjoint elements.

We are now reduced to the following problem: Given a bounded, self-adjoint linear map φ between two C*-algebras, when can we write $\varphi = \varphi_1 - \varphi_2$ where φ_1 , φ_2 are bounded, positive linear maps?

DEFINITION 0.1. We shall call such a form a Hahn decomposition of φ .

In general, a Hahn decomposition is not always possible. Even in the commutative case, pathology can occur [see Theorem 2.2 below].

For future references, we state here Grothendieck's result for