ON CERTAIN g-FIRST COUNTABLE SPACES

KYUNG BAI LEE

In this paper strongly* o-metrizable spaces are introduced and it is shown that a space is strongly* o-metrizable if and only if it is semistratifiable and o-metrizable (or symmetrizable); g-metrizable spaces are strongly* o-metrizable and hence quotient π -images of metric spaces. As what F. Siwiec did for (second countable, metrizable and first countable) spaces, we introduce g-developable spaces, and it is proved that a Hausdorff space is g-developable if and only if it is symmetrizable by a symmetric under which all convergent sequences are Cauchy.

1. o-metrizable spaces. Let X be a topological space and d be a nonnegative real-valued function defined on $X \times X$ such that d(x, y) = 0 if and only if x = y. Such a function d is called an o-metric [16] for X provided that a subset U of X is open if and only if d(x, X - U) > 0 for each $x \in U$. An o-metric d is called a strong o-metric [17] if each sphere $S(x; r) = \{y \in X: d(x, y) < r\}$ is a neighborhood of x; a symmetric if d(x, y) = d(y, x) for each x and y; a semimetric if d is a symmetric such that $x \in \overline{M}$ if and only if d(x, M) = 0.

For a space X, let g be a map defined on $N \times X$ to the power-set of X such that $x \in g(n, x)$ and $g(n + 1, x) \subset g(n, x)$ for each n and x; a subset U of X is open if for each $x \in U$ there is an n such that $g(n, x) \subset U$. We call such a map a CWC-map (=countable weaklyopen covering map). Consider the following conditions on g:

(1) if $x_n \in g(n, x)$ for each n, the sequence $\{x_n\}$ converges to x, (2) if $x \in g(n, x_n)$ for each n, the sequence $\{x_n\}$ converges to x, and

(3) each g(n, x) is open.

Note that (1) is equivalent to: $\{g(n, x): n \in N\}$ is a local net at x, and (2) is equivalent to: $\{g^*(n, x): n \in N\}$ is a local net at x, where $g^*(n, x)$ is defined by $x \in g^*(n, y)$ if and only if $y \in g(n, x)$.

X is said to be g-first countable [1, 20] if X has a CWC-map satisfying (1); first countable if X has a CWC-map satisfying (1) and (3). Semistratifiable spaces [8] are characterized by spaces having CWC-maps satisfying (2) and (3); symmetrizable spaces [4] by spaces having CWC-maps satisfying (1) and (2); semimetrizable spaces [11] by spaces having CWC-maps satisfying (1), (2) and (3).

The following proposition may be found in [18], but we will