STANDARD REGULAR SEMIGROUPS

R. J. Warne

Abstract

We give a structure theorem for a class of regular semigroups. Let S be a regular semigroup, let T denote the union of the maximal subgroups of S, and let $E(T)$ denote the set of idempotents of T. Assume T is a semigroup (equivalently, T is a semilattice Y of completely simple semigroups ($T_{y}: y \in Y$). If Y has a greatest element and $e, f, g \in$ $E(T), e \geqslant f$, and $e \geqslant g$ imply $f g=g f$, we term S a standard regular gemigroup. The structure of S is given modulo right groups and an inverse semigroup V in which every subgroup is a single element by means of an explict multiplication. We specialize the structure theorem to orthodox, \mathscr{L}-unipotent, and inverse semigroups, and to a class of semigroups with Y an ωY-semilattice.

Finally, we show that S is a regular extension of T by V in the sense of Yamada [19].

Let us first state the structure theorem. Let Y be a semilattice with greatest element. Let V be an inverse semigroup with semilattice of idempotents Y such that each subgroup of V consists of a single element. Let (I, \circ) be a standard regular semilattice Y of left zero semigroups $\left(I_{y}: y \in Y\right)$. Let $\left(J,{ }^{*}\right)$ be a standard regular semilattice Y of right groups $\left(J_{y}: y \in Y\right)$. Suppose $I_{y} \cap J_{y}=\left\{e_{y}\right\}$, a single idempotent element, and $e_{y}^{*} e_{z}=e_{y} \circ e_{z}=e_{y z}$ for all $y, z \in Y$. Let H_{y} denote the maximal subgroup of J_{y} containing e_{y}. Let $i \rightarrow B_{i}$ be a homomorphism of (I, \circ) into $P(J)$, the semigroup of right translations of $(J, *)$; let $b \rightarrow \beta_{b}$ be a mapping of V into End $\left(J,{ }^{*}\right)$, the semigroup of endomorphism of ($J, *$), and let g be a mapping of $V \times V$ into $H=\bigcup\left(H_{y}: y \in Y\right)$, a semilattice Y of groups $\left(H_{y}: y \in Y\right)$ (with respect to the multiplication ${ }^{*}$ in J) such that $1\left(\right.$ a) $j B_{i} \in H_{y z}$ for $i \in I_{y}$ and $j \in J_{z}$, (b) $J_{r} \beta_{b} \cong H_{b^{-1} r b}$, (c) $g(c, d) \in H_{(c d)^{-1} c d}$. 2(a) $h B_{e_{y}}=h \beta_{y}=h^{*} e_{y}$ for $h \in J$ and $y \in Y$. (b) if $j \in H_{z}$ and $i \in I_{z}, j B_{i}=j$ (c) $g(y, z)=e_{y z}$ for $y, z \in Y$. 3(a)

$$
\beta_{c} \beta_{d}=\beta_{c d} C_{g(c, d)}\left(x C_{z}=z^{-1 *} x * z \text { for } x, z \in H\right)
$$

(b) $g(a, b c) * g(b, c)=g(a b, c) *\left(g(a, b) \beta_{c}\right)$. Let $(Y, I, J, V, B, \beta, g)$ denote $\left\{(i, a, j): a \in V, i \in I_{a a^{-1}}, j \in J_{a^{-1} a}\right\}$ under the multiplication (4)

$$
(i, a, j)(w, b, v)=\left(i \circ e_{(a b)(a b)^{-1}}, a b, g(a, b) * j B_{w} \beta_{b} * v\right) .
$$

We show (Theorem 3.14) that (Y, I, J, V, B, β, g) is a standard regular semigroup, and, conversely, every standard regular semigroup is isomorphic to some (Y, I, J, V, B, β, g).

