OPEN MAPPING THEOREMS FOR PROBABILITY MEASURES ON METRIC SPACES

LARRY O. EIFLER

Let S and T denote complete separable metric spaces. Let P(S) denote the collection of probability measures on S and equip P(S) with the weak topology. If $\varphi: S \to T$ is continuous and onto, then φ induces a weakly continuous mapping φ° of P(S) onto P(T). We show that φ° is open in the weak topology if and only if φ is open. However, φ° is always open in the norm topology. Let K be a totally disconnected compact metric space and let S^{κ} denote the set of continuous mappings of K into S. Then there exists a natural mapping π of $P(S^{\kappa})$ into $P(S)^{\kappa}$. Blumenthal and Corson have shown that π is onto. We establish that π is an open mapping in the weak topology.

1. Introduction. Let S be a complete separable metric space and let C(S) denote the algebra of bounded continuous real-valued functions on S. Let M(S) denote the collection of Borel measures on S which have finite total variation $\|\mu\|$. Given $f \in C(S)$ and $\mu \in M(s)$, set $\mu(f) = \int f(s)d\mu(s)$. The weak topology on M(S) is the topology on M(S) induced by C(S). Thus, a neighborhood system at μ in M(S) is given by sets of the form

$$N_{\epsilon}(\mu; f_1, \dots, f_n) = \{ \nu \in M(S) : |(\mu - \nu)f_i| < \epsilon \text{ for } i = 1, \dots, n \}$$
where $\epsilon > 0$ and $f_1, \dots, f_n \in C(S)$.

Let $M^+(S)$ denote the non-negative measures and let P(S) denote the probability measures in M(S).

Our goal is to establish open mapping theorems for some naturally induced mappings between sets of probability measures. Let φ be a continuous map of S onto T where S and T are complete separable metric spaces. Define $\varphi^0: M(S) \to M(T)$ by

$$\varphi^0 \mu(g) = \mu(g \circ \varphi)$$
 for each $g \in C(T)$.

A result of P. A. Meyer [9, p. 126] shows that φ^0 maps P(S) onto P(T). We show that φ^0 is open in the weak topology if and only if φ is open.

Let K be a totally disconnected compact metric space and let S^{K}