INTEGRAL BASES FOR BICYCLIC BIQUADRATIC FIELDS OVER QUADRATIC SUBFIELDS

Robert H. Bird and Charles J. Parry
Explicit conditions are given for a bicyclic biquadratic number field to have an integral basis over a quadratic subfield.

A classical question of algebraic number theory is, "When does an algebraic number field K have an integral basis over a subfield k ?"

A complete and explicit answer to the above question is given here when K is a bicyclic biquadratic number field and k is a quadratic subfield. Moreover, an explicit integral basis is given for K / k whenever one exists. In the cases where k is imaginary or k is real and has a unit of norm -1 , the conditions involve only rational congruences. When k is real and the fundamental unit of ϵ has norm +1 , the conditions sometimes involve $\boldsymbol{\epsilon}$.

1. Notation and preliminary remarks. Throughout this article the following notation shall be used:
Q : field of rational numbers.
Z : rational integers.
m, n : square free integers.
$l=(m, n) \geq 0, m=m_{1} l, n=n_{1} l$ and $d=m_{1} n_{1}$.
$K=Q(\sqrt{m}, \sqrt{n})$: bicyclic biquadratic field.
$k=Q(\sqrt{m})$.
$\delta_{L / M}$: different of an extension L / M.
$N(\epsilon)$: norm of the unit ϵ.
p, q : odd prime numbers.
An integral basis for K over Q has been determined in [1, 3, 6]. Here an integral basis for K over $k=Q(\sqrt{m})$ will be determined whenever it exists. In these considerations the roles of n and d are interchangeable so it will only be necessary to consider seven pairs of congruence classes for (m, n) modulo 4 ; namely $(1,1),(1,2),(1,3),(2,1)$, $(2,3),(3,1)$ and $(3,2)$.

It follows immediately from [5] that K has an integral basis over k if and only if $K=k\left(D^{\frac{1}{2}}\right)$ where (D) is the discriminant of K over k. Since K is a quadratic extension of k the discriminant is the square of the different δ. In $[3,6]$ the different of K over Q is explicitly determined by:

