THE BOUNDARY BEHAVIOR OF HENKIN'S KERNEL

PATRICK AHERN AND ROBERT SCHNEIDER

In this paper, the boundary behaviour of a reproducing kernel, introduced by Henkin, for strictly pseudoconvex domains is studied. As an application, an improved version of a known result about generators of certain maximal ideals is given.

The boundary behaviour of the Bergmann kernel $B(z, \zeta)$ for a strictly pseudoconvex domain has been studied by Bergmann [1] and Hörmander [5]. Among other things, they determine the rate at which B(z, z) goes to infinity as z approaches a boundary point of the domain. Another type of reproducing kernel has been introduced by Henkin [3] for bounded strictly pseudoconvex domains D, in Cⁿ. Henkin's kernel is of the form $K(\zeta, z)/\Phi^n(\zeta, z)$, where K and Φ are holomorphic in a neighborhood of \overline{D} for each ζ in ∂D , the boundary of The denominator Φ has the properties that $\Phi(\zeta, \zeta) = 0$ for all $\zeta \in \partial D$ D. and that $\Phi(\zeta, z) \neq 0$ if $z \in \overline{D} \setminus \{\zeta\}$. For z near ζ, Φ is given explicitly (up to a nonvanishing factor) in terms of the plurisubharmonic function ρ that defines the domain D. Precise statements about the way $\Phi(\zeta, z)$ approaches zero as z approaches ζ from inside D are given in Henkin's paper [3]. We show that this determines the behaviour of the kernel K/Φ^n by showing that $K(\zeta, \zeta) \neq 0$.

It has been proven in [4], [6], [7] and [9], that if f is in the space A(D) of functions continuous on \overline{D} and holomorphic in D and if $a \in D$ then there exist functions $g_1, \dots, g_n \in A(D)$ such that

$$f(z) - f(a) = \sum_{j=1}^{n} (z_j - a_j)g_j(z).$$

This is a solution to a problem originally posed by Gleason [2] for the unit ball in \mathbb{C}^n . Using Henkin's integral formula and our result on the behaviour of Henkin's kernel we can improve the result just stated in two ways. Firstly, we show that the g_i can be chosen in such a way that the association between f and the *n*-tuple of functions (g_1, \dots, g_n) is linear, and secondly we show that the g_i may be also chosen to depend analytically on a as well as on z.

1. Notation. D will always denote a bounded strictly pseudoconvex domain in \mathbb{C}^n defined as $D = \{z : \rho(z) < 0\}$, where ρ is defined and strictly plurisubharmonic in a neighborhood U of \overline{D} , such that the gradient of ρ is not zero on the boundary of D. For $\epsilon > 0$ we let