ON A CLASS OF UNBOUNDED OPERATOR ALGEBRAS II

Atsushi Inoue

In this paper we continue our study of unbounded operator algebras. On the basis of the space $L^{\infty}[0,1]$ introduced by R. Arens [1] we define and investigate unbounded Hilbert algebras. The primary purpose of this paper is to investigate the relation between unbounded Hilbert algebras and EW^* -algebras and the structure of some EW^* -algebras.

1. Introduction. In a previous paper [10] we began our study of EW^* -algebras. For the definitions and the basic properties concerning EW^* -algebras is referred to [10]. It is well known that semifinite von Neumann algebras are related to Hilbert algebras. That is, if \mathcal{D}_0 is a Hilbert algebra, then the left von Neumann algebra $\mathcal{U}_0(\mathcal{D}_0)$ is defined and $\mathcal{U}_0(\mathcal{D}_0)$ is a semifinite von Neumann algebra and conversely if \mathfrak{A} is a semifinite von Neumann algebra, then there exists a Hilbert algebra \mathcal{D}_0 such that \mathfrak{A} is isomorphic to the left von Neumann algebra $\mathcal{U}_0(\mathcal{D}_0)$. In this paper we study the above facts about EW^* -algebras. So, our starting point will be the extension of Hilbert algebras.

DEFINITION 1.1. Let \mathcal{D} be a pre-Hilbert space with inner product (|) and a * -algebra. If \mathcal{D} satisfies the following conditions (1) ~ (3);

(1) $(\xi \mid \eta) = (\eta^* \mid \xi^*), \quad \xi, \eta \in \mathcal{D};$

(2) $(\xi \eta \mid \zeta) = (\eta \mid \xi^* \zeta), \quad \xi, \eta, \zeta \in \mathcal{D};$

By (2) we define $\pi(\xi)$ and $\pi'(\eta)$ by;

$$\pi(\xi)\eta = \pi'(\eta)\xi = \xi\eta, \quad \xi,\eta \in \mathcal{D}.$$

Then $\pi(\xi)$ and $\pi'(\eta)$ are closable operators on \mathcal{D} and we have $\pi(\xi)^* \supset \pi(\xi^*)$ and $\pi'(\eta)^* \supset \pi'(\eta^*)$. We call π (resp. π') the left (resp. right) regular representation of \mathcal{D} .

(3) Putting

$$\mathcal{D}_0 = \{ \xi \in \mathcal{D} ; \pi(\xi) \text{ is continuous} \},\$$

 \mathscr{D}_0^2 is dense in \mathscr{D} , then \mathscr{D} is called an unbounded Hilbert algebra over \mathscr{D}_0 . In particular, if $\mathscr{D}_0 \neq \mathscr{D}$, then \mathscr{D} is called a pure unbounded Hilbert algebra over \mathscr{D}_0 .

In §2 we investigate the properties of unbounded Hilbert algebras and we introduce examples of such unbounded Hilbert algebras $(L^{\omega}[0, 1],$