PARAMETRIZED SURGERY AND ISOTOPY

W. C. HSIANG AND R. W. SHARPE

The pseudo-isotopy techniques of Cerf-Hatcher-Wagoner are combined with surgery theory to give information about the group of isotopy classes of diffeomorphisms of a smooth manifold. For example, for the *n*-torus, $n \ge 6$, this group is determined completely. We also provide a geometric interpretation of the periodicity sequence of [11].

Introduction. Let M be an n-dim $(n \ge 6)$ smooth manifold without boundary¹ and let Diff M be the group of diffeomorphisms of M. Let Aut M be the H-space of simple homotopy equivalences of M to itself, i.e., Aut $M = \{f \in M^{\mathcal{M}} | f \text{ is a simple homotopy equi$ $valence}\}$. We have the following fibration

$$(1) \qquad \qquad \Im(M) \longrightarrow \operatorname{Diff} M \longrightarrow \operatorname{Aut} M$$

Then, a point in $\mathfrak{G}(M)$ is represented by a pair (ϕ, ϕ_t) where $\phi \in \text{Diff } M$ and ϕ_t is a path in Aut M connecting ϕ to Id \in Aut M. Set

(2)
$$M_{\phi} = M \times I/\{(m, 1) \sim (\phi(m), 0)\},$$

the mapping torus of ϕ . ϕ_i induces a simple homotopy equivalence

(3)
$$F: (M_{\phi}, M \times 1) \longrightarrow (M \times S^{1}, M \times 1)$$
.

Following [10], one can construct a space $\mathscr{S}(M \times (S^{i}, 1))$ of simple homotopy smoothings of $M \times S^{i}$ which are standard on $M \times 1$. W. Browder [1] studies the map

defined by $\tau((\phi, \phi_t)) = F$. On the other hand, we have the map

$$(5) \qquad \eta \colon \mathscr{S}(M \times (S^{1}, 1)) \longrightarrow G/0^{\Sigma M^{+}}$$

where $\Sigma M^+ = M imes S^1/M imes 1$. Let us consider the following diagram of fibrations

¹ Everything works for PL, topological manifold, and manifold with boundary if the boundary is only allowed to move by an isotopy. Using a result of K. Igusa, everything works also for n = 5.