INTEGRALS OF FOLIATIONS ON MANIFOLDS WITH A GENERALIZED SYMPLECTIC STRUCTURE

R. O. Fulp and J. A. Marlin

Let M be a C^{∞} manifold of dimension m and E an integrable subbundle (foliation) of the tangent bundle TM. We are interested in structures on the set of all local integrals of E. For example, if M is a symplectic manifold then the Poisson brackets operation on the set $C_{10 c}^{\infty}$ of all local functions of M defines an algebraic structure on $C_{10 c}^{\infty}$. Earlier authors have called such structures "function groups." In particular, if X_{H} is a nonvanishing Hamiltonian vector field, then X_{H} defines a foliation E of M and the set of all local integrals of E is also a function group.

The Poisson brackets operation can be defined on manifolds with somewhat less restrictive requirements than that of being symplectic. Other authors such as S . Lie and C. Carathéodory [4] have studied this more general notion of Poisson brackets in the classical local setting. Hermann [9, p. 31] has indicated how to extend the definition of Poisson brackets to functions on manifolds having a closed 2 -form ω of constant rank (Recall that M is called symplectic if ω_{p} has rank m for each $p \in M$).

The paper is largely self-contained, but does require the use of the following basic identities:

$$
L_{X} Y=[X, Y], \quad L_{X}=i_{X} d+d i_{X}, \quad L_{X} i_{Y}-i_{Y} L_{X}=i_{[X, Y]} .
$$

The proofs of these identities may be found in Chapter IV of the first volume of [7]. Other undefined terms appear either in [1] or [7].

1. Generalized symplectic structures on manifolds. Let M be a C^{∞} manifold of dimension m and let ω be a closed 2 -form on M. Recall that the kernel of a 2-form ω can be defined at each point $p \in M$ by

$$
\begin{aligned}
\operatorname{ker} \omega_{p} & =\left\{v \in M_{p} \mid \omega\left(v, M_{p}\right)=0\right\} \\
& =\left\{v \in M_{p} \mid \omega\left(M_{p}, v\right)=0\right\}
\end{aligned}
$$

The rank of ω at p is defined to be the rank of the bilinear map $\omega_{p}: M_{p} \times M_{p} \rightarrow R$. Of course, since ω_{p} is a skew-symmetric bilinear map its rank is the even integer $m-\operatorname{dim}\left(\operatorname{ker} \omega_{p}\right)$.

Let Γ denote the set of sections of $T M$ and Γ^{*} the set of sections of $T^{*} M$. Define $\alpha: \Gamma \rightarrow \Gamma^{*}$ by

