CHARACTERIZATIONS OF CERTAIN MAPS OF CONTRACTIVE TYPE

Chi Song Wong

The following result is obtained. Let f be a self map on a nonempty complete metric space (X, d). Then the following conditions are equivalent: (i) For any $\epsilon > 0$, there exists $\delta(\epsilon) > 0$ such that $d(f(x), f(y)) < \epsilon$ whenever $\epsilon \le d(x, y) < \epsilon + \delta(\epsilon)$. (ii) There exists a function w of $[0, \infty)$ into $[0, \infty)$ such that w(s) > sfor all s > 0, w is lower semicontinuous from the right on $(0, \infty)$ and $w(d(f(x), f(y))) \le d(x, y), x, y \in X$.

1. Introduction. In 1969, E. Keeler and A. Meir [3] obtained the following result.

THEOREM A. (Keeler and Meir). Let f be a self map on a nonempty complete metric space (X, d). Suppose that for any $\epsilon > 0$, there exists $\delta(\epsilon) > 0$ such that $d(f(x), f(y)) < \epsilon$ whenever $\epsilon \leq d(x, y) < \epsilon + \delta(\epsilon)$. Then f has a unique fixed point x_0 and $\{f^n(x)\}$ converges to x_0 for all x in X.

Theorem A generalized the following result of D. W. Boyd and J. S. W. Wong [1] (and therefore, an earlier result of E. Rakotch [4]).

THEOREM B. (Boyd and Wong). Let f be a self map on a nonempty complete metric space (X, d). Suppose that there exists a self map Φ on $[0, \infty)$ such that Φ is upper semicontinuous from the right, $\Phi(t) < t$ for t > 0 and f is Φ -contractive:

 $d(f(x), f(y)) \le \Phi(d(x, y)), \qquad x, y \in X.$

Then f has a unique fixed point x_0 and $\{f^n(x)\}$ converges to x_0 for all x in X.

In this paper, equivalent conditions in terms of monotone transformations are obtained. These will show that the essential difference between Theorems A and B is a matter of imposing monotone transformations on the left side or right side of certain inequalities.

2. Main results.

THEOREM 1. Let f be a self map on a nonempty complete metric space (X, d). Then the following conditions are equivalent: