COMPOSITION PROPERTIES OF PROJECTIVE HOMOTOPY CLASSES

S. Feder, S. Gitler and K. Y. Lam

1. Introduction. A homotopy class $x \in \pi_{q}(X)$ is said to be projective on X, or projectively carried by X, if it can be represented by a map that factors through the projective space p^{q}, as shown in diagram (I), where $\hat{\pi}$ is the double covering map.

(II)

When x is a stable homotopy class of spheres, it is of interest to ask for the values of m such that x be projective on S^{m}. Since S^{m} is $(t-1)$-connected for $t \leqq m$, this amounts to the factorisation problem posed in diagram (II) above, where π is $\hat{\pi}$ followed by the collapsing map from P^{q} to the truncated projective space $P_{i}^{q}=P^{q} / P^{t-1}$. We give an answer to this problem when x is a generator of the image of the J-homomorphism.

In recent years the problem of projective classes has been studied in [3], [8], [10], [13], and [14]. We refer especially to [8], in which the authors determine, for classes up to the 28 -stem, the various spheres that can carry them projectively. We also refer to [10], where the authors prove among other things, that every stable homotopy class of spheres is carried projectively by some sphere.

Let u, v be classes in stable stems of spheres, and suppose x is projectively carried by X. For specific u and v, it sometimes turns out that the composition $x u$, or a representative x^{\prime} of the secondary composition $\langle x, u, v\rangle$ (i.e., Toda bracket), will also be carried by X projectively. In this paper we prove the following typical results.

Theorem 5.1. Let $x \in \pi_{q}(X)$ be projective on the $(m-1)$-connected space X, where $q \leqq 2 m-4$. Then $x \eta$ is projective on X.

Theorem 6.2. Let $x \in \pi_{q}(X)$ be projective on the $(m-1)$ connected space X, where $q \leqq 2 m-10$ and $q \equiv 3(\bmod 4)$. If the Toda bracket $\langle x, 8 \sigma, 2\rangle$ is defined, then all its representatives are projective on X.

As an application we deduce Mahowald's Theorem D [7, p. 4] on the vanishing of certain Whitehead products, namely

