COMPOSITION PROPERTIES OF PROJECTIVE HOMOTOPY CLASSES

S. FEDER, S. GITLER AND K. Y. LAM

1. Introduction. A homotopy class $x \in \pi_q(X)$ is said to be projective on X, or projectively carried by X, if it can be represented by a map that factors through the projective space p^q , as shown in diagram (I), where $\hat{\pi}$ is the double covering map.

(I)
$$\hat{\pi} \bigvee_{P^q}^{q} \xrightarrow{x} X$$
 $S^q \xrightarrow{x} S^m$
(II) $\pi \bigvee_{P^q}^{f}$ (II) $\pi \bigvee_{P^q}^{f}$ $(t \le m)$.

When x is a stable homotopy class of spheres, it is of interest to ask for the values of m such that x be projective on S^m . Since S^m is (t-1)-connected for $t \leq m$, this amounts to the factorisation problem posed in diagram (II) above, where π is $\hat{\pi}$ followed by the collapsing map from P^q to the truncated projective space $P_i^q = P^q / P^{t-1}$. We give an answer to this problem when x is a generator of the image of the J-homomorphism.

In recent years the problem of projective classes has been studied in [3], [8], [10], [13], and [14]. We refer especially to [8], in which the authors determine, for classes up to the 28-stem, the various spheres that can carry them projectively. We also refer to [10], where the authors prove among other things, that every stable homotopy class of spheres is carried projectively by some sphere.

Let u, v be classes in stable stems of spheres, and suppose x is projectively carried by X. For specific u and v, it sometimes turns out that the composition xu, or a representative x' of the secondary composition $\langle x, u, v \rangle$ (i.e., Toda bracket), will also be carried by Xprojectively. In this paper we prove the following typical results.

THEOREM 5.1. Let $x \in \pi_q(X)$ be projective on the (m-1)-connected space X, where $q \leq 2m - 4$. Then $x\eta$ is projective on X.

THEOREM 6.2. Let $x \in \pi_q(X)$ be projective on the (m-1)connected space X, where $q \leq 2m - 10$ and $q \equiv 3 \pmod{4}$. If the Toda bracket $\langle x, 8\sigma, 2 \rangle$ is defined, then all its representatives are projective on X.

As an application we deduce Mahowald's Theorem D [7, p. 4] on the vanishing of certain Whitehead products, namely