A NOTE ON SPECTRAL CONTINUITY AND ON SPECTRAL PROPERTIES OF ESSENTIALLY G_1 OPERATORS

GLENN R. LUECKE

A bounded operator on a separable Hilbert space is essentially G_1 if the image of T in the Calkin algebra satisfies condition G_1 . This paper contains results describing (1) isolated points of the essential spectrum of essentially G_1 operators, and (2) essentially G_1 operators whose essential spectrum lies on a smooth Jordan curve. Finally, the continuity of the essential spectrum, Weyl spectrum, and spectrum is discussed.

Notation and definitions. Throughout this paper H denotes a separable Hilbert space, $\mathscr{B}(H)$ denotes all bounded operators on H, \mathcal{K} denotes all compact operators in $\mathcal{B}(H)$, $\mathcal{B}(H)/\mathcal{K}$ denotes the Calkin algebra, and $\pi: \mathscr{B}(H) \to \mathscr{B}(H)/\mathscr{K}$ denotes the quotient map. Since $\mathscr{B}(H)/\mathscr{K}$ is a C*-algebra, there exists a Hilbert space H_0 and an isometric *-isomorphism ν of $\mathscr{B}(H)/\mathscr{K}$ into $\mathscr{B}(H_0)$ [see 2]. The essential spectrum of $T \in \mathscr{B}(H)$, denoted by $\sigma_{\mathfrak{s}}(T)$, is the spectrum of $\pi(T)$ in the Calkin algebra. T is essentially G_1 if $||(\pi(T)-z)^{-1}||=1/d(z,\,\sigma_e(T))$ for all $z \notin \sigma_e(T)$. T is essentially hyponormal, essentially normal, or essentially self-adjoint if $\pi(T^*T - TT^*) \ge 0, \ \pi(T^*T - TT^*) = 0, \ \text{or} \ \pi(T^* - T) = 0, \ \text{respec-}$ tively. If λ is an eigenvalue of T then λ is a normal eigenvalue if $\{x \in H: Tx = \lambda x\} = \{x \in H: T^*x = \lambda^*x\}$. If λ is an approximate eigenvalue of T then λ is a normal approximate eigenvalue if $||(T - \lambda I)x_n|| \rightarrow 0$ if and only if $||(T - \lambda I)^*x_n|| \rightarrow 0$, where $||x_n|| = 1$ for all n.

1. Spectral properties of essentially G_1 operators. Recall that an isolated point λ of the spectrum of an operator $T \in \mathscr{B}(\mathscr{K})$ that satisfies condition G_1 (i.e., $||(T - zI)^{-1}|| = 1/d(z, \sigma(T))$ for all $z \notin \sigma(T)$) must be a normal eigenvalue. What happens when λ is an isolated point of $\sigma_e(T)$ and T is essentially G_1 ? We first look at the special case when T is a compact operator ($\sigma_e(T) = \{0\}$). The following is a "folk" theorem whose proof is included for completeness.

THEOREM 1. If T is a compact operator with ker $T = \text{ker } T^* = \{0\}$, then 0 is a normal approximate eigenvalue of T.

Proof. Since T is compact, 0 is in the approximate point spect-