A GENERALIZATION OF CARISTI'S THEOREM WITH APPLICATIONS TO NONLINEAR MAPPING THEORY

David Downing and W. A. Kirk

Abstract

Suppose X and Y are complete metric spaces, $g: X \rightarrow X$ an arbitrary mapping, and $f: X \rightarrow Y$ a closed mapping (thus, for $\left\{x_{n}\right\} \subset X$ the conditions $x_{n} \rightarrow x$ and $f\left(x_{n}\right) \rightarrow y$ imply $\left.f(x)=y\right)$. It is shown that if there exists a lower semicontinuous function φ mapping $f(X)$ into the nonnegative real numbers and a constant $c>0$ such that for all x in $X, \max \{d(x, g(x))$, $c d(f(x), f(g(x))\} \leqq \varphi(f(x))-\varphi(f(g(x)))$, then g has a fixed point in X. This theorem is then used to prove surjectivity theorems for nonlinear closed mappings $f: X \rightarrow Y$, where X and Y are Banach spaces.

1. Introduction. The following fact is well-known in the theory of linear operators;
(1.1) Let X and Y be Banach spaces with D a dense subspace of X, and let $T: D \rightarrow Y$ be a closed linear mapping with dual T^{\prime}. Suppose the following two conditions hold:
(i) $N\left(T^{\prime \prime}\right)=\{0\}$.
(ii) For fixed $c>0$, $\operatorname{dist}(x, N(T)) \leqq c\|T x\|, x \in D$. Then $T(D)=Y$.

Proof. Because T is a closed mapping it routinely follows from (ii) that $T(D)$ is closed in Y (e.g., [15, p. 72]), whence it follows from the Hahn-Banach theorem (cf. [17, p. 205]) that $\left(N\left(T^{\prime}\right)\right)^{\perp}=T(D)$ where $\left(N\left(T^{\prime}\right)\right)^{\perp}$ denotes the annihilator in Y of the nullspace of T^{\prime}. By (i), $\left(N\left(T^{\prime}\right)\right)^{\perp}=Y$.

It is our objective in this paper to give a nonlinear generalization of the above along with more technical related results. The key to our approach is an application of a new generalized version of Caristi's fixed point theorem. While our method parallels that of Kirk and Caristi [12], these new results differ from those of [12] and the earlier 'normal solvability' results of others, e.g., Altman [1], Browder [3-6], Pohozhayev [13, 14], and Zabreiko-Krasnoselskii [18], in that by using the improved fixed point theorem we are able to replace the usual closed range assumption with the assumption that the mapping be closed (in conjunction with a condition which in the linear case reduces to (ii)). Before doing this, however, we state and prove our fixed point theorem.

