SHEAR DISTALITY AND EQUICONTINUITY

DENNIS F. DE RIGGI AND NELSON G. MARKLEY

Let X be a compact Hausdorff space, let \mathbb{R}^p be pdimensional Euclidean space, and let (X, \mathbb{R}^p) be a minimal transformation group. It may happen that xH will always contain flow lines in at least one direction in \mathbb{R}^p for any discretr syndetic subgroup H no matter how sparce. We interpret this phenomena as some intrinsic shearing motion in the minimal transformation group. This is quantified in Section 1 and it turns out that equicontinuous minimal sets have as little shear as possible. Since distality is also a rigidity condition, it is natural to investigate the shear of a distal minimal set. We show by example in Section 2 that distal minimal sets can contain more shear than equicontinuous ones.

In Section 3 we show how the topology of xH is locally determined by local sections and subspaces of \mathbb{R}^{p} . Using this result we prove in Section 4 that a distal minimal action of \mathbb{R}^{n-1} with trivial isotropy on a compact *n*-dimensional manifold is equicontinuous.

This paper contains portions of the first author's dissertation [1] and generalizations of some results in an unpublished preprint [6] by the second author.

1. Shear. Let X be a compact Hausdorff space and let (X, \mathbb{R}^p) be a minimal transformation group. Set $I_x = \{v \in \mathbb{R}^p : xv = x\}$ and note that it is a closed subgroup of \mathbb{R}^p which is independent of x because of the minimality. This group will be denoted by I or $I(X, \mathbb{R}^p)$ and we will say that (X, \mathbb{R}^p) has trivial isotropy when $I = \{0\}$. We will frequently need to assume that (X, \mathbb{R}^p) is locally free; that is, given $x \in X$ there exists a neighborhood W of 0 in \mathbb{R}^p such that $xv \neq x$ for all v in W. Clearly (X, \mathbb{R}^p) is locally free if and only if I is discrete.

Let H be a closed syndetic (co-compact) subgroup of \mathbb{R}^p . It is well known that (X, H) is pointwise almost periodic and $H_x = \{v : xv \in xH\}$ is also a closed syndetic subgroup of \mathbb{R}^p such that $\overline{xH_x} = \overline{xH}$. [4, Theorem 4.04, Lemma 2.09 and Lemma 2.10.] Again by minimality H_x is independent of x. We will say that H is self-enveloping when $xv \in xH$ implies $v \in H$ or $H_x = H$ for all x. When $\overline{xH} = X$ for every closed syndetic subgroup of \mathbb{R}^p , (X, \mathbb{R}^p) is said to be totally minimal. Let $\mathscr{G} = \mathscr{G}(X, \mathbb{R}^p)$ denote the collection of closed syndetic subgroups of \mathbb{R}^p which are self-enveloping for (X, \mathbb{R}^p) . It is obvious that (X, \mathbb{R}^p) is totally minimal if and only if $\mathscr{G} = \{\mathbb{R}^p\}$.