ON THE RETRACTABILITY OF SOME ONE-RELATOR GROUPS

Richard D. Byrd, Justin T. Lloyd
and Roberto A. Mena

Abstract

Recently the concept of a retractable group has been introduced. This class of groups contains the class of latticeordered groups as a proper subclass, and, in particular, contains the class of all torsion-free abelian groups. Retractable groups enjoy many of the properties of lattice-ordered groups; in fact, most results concerning lattice-ordered groups have immediate extensions to this wider class. In this note, we investigate the retractability of certain two-generator one-relator groups.

1. Introduction. There has been an abundance of literature on the class of groups presented by a single defining relation and, in particular, on the groups given by the presentation

$$
\left\langle a, c \mid \alpha^{-1} c^{m} a=c^{n}\right\rangle,
$$

where m and n are integers. In [1] the concept of a retractable group was introduced and in this note we attempt to determine which of this latter class of groups are retractable.

In Theorem 3.3 we show that the groups $\left\langle a, c \mid a^{-1} c a=c^{m}\right\rangle$, where m is a positive integer, are retractable and each admits at least a countably infinite number of retractions that satisfy condition (δ). (Definitions will be given in $\S \S 2$ and 3.) It was shown in [5] that the group $\left\langle a, c \mid a^{-1} c a=c^{2}\right\rangle$ admits exactly four full orders. Each of these induces a retraction on this group. We show in Theorem 3.5 that each of the groups $\left\langle a, c \mid a^{-1} c a=c^{m}\right\rangle$, where $m>1$, admits exactly four lattice-orders and each of these is a full order. In Theorem 3.6 we show that the groups $\left\langle a, c \mid \alpha^{-1} c a=c^{m}\right\rangle$, where $m<0$, admit retractions if and only if 2 is a factor of m, and in this case, none of these groups admit lattice-orders. In Theorem 3.1 we show that if G is a retractable group and $g^{n}=h^{n}$, for some $g, h \in G$ and some natural number n, then g and h are conjugate. As a corollary to this theorem, we are able to show that the groups $\left\langle a, c \mid a^{n}=c^{n}\right\rangle$, where n is a natural number and $n>1$, and

$$
\left\langle a, c \mid a^{-1} c^{m} a=c^{n}\right\rangle,
$$

where m and n are distinct integers and $\operatorname{gcd}(m, n)>1$, are not retractable.

