THE R-BOREL STRUCTURE ON A CHOQUET SIMPLEX

R. R. Smith

Abstract

The R-Borel structure on a Choquet simplex K is studied. It is shown that the central decomposition and maximal measures coincide, and this is used to improve the wellknown theorem that maximal measures are pseudo-concentrated on the extreme boundary.

1. Introduction. Let K denote a compact convex subset of a locally convex Hausdorff topological vector space, and denote by $A^{b}(K)$ the Banach space of bounded real valued affine functions on K. The symbols $A(K), A(K)^{m}$, and $A(K)_{m}$ denote respectively the sets of continuous, lower semi-continuous and upper semi-continuous functions in $A^{b}(K)$. Set $S(K)=A(K)^{m}+A(K)_{m}$, and let $S(K)^{\mu}$ be the smallest subset of $A^{b}(K)$ containing $S(K)$ and closed under the formation of pointwise limits of uniformly bounded monotone sequences. $S(K)^{\mu}$ is a Banach space, the following properties of which were obtained in [6].

Theorem 1.1. Consider $a \in S(K)^{\mu}$.
(i) $\|a\|=\left\|a \mid \partial_{e} K\right\|$.
(ii) $a \geqq 0$ if and only if $a \mid \partial_{e} K \geqq 0$.
$S(K)^{\prime \prime}$ is an order unit space and thus possesses a centre $Z\left(S(K)^{\mu}\right)$ defined in terms of order bounded operators [2]. However a more convenient formulation was obtained in [6]: $z \in S(K)^{\mu}$ is said to be a central element if and only if to each $a \in S(K)^{\mu}$ there corresponds $b \in S(K)^{\mu}$ satisfying $b(x)=a(x) z(x)$ for all $x \in \partial_{\theta} K . \quad Z\left(S(K)^{\mu}\right)$ is then seen to be an algebra and a lattice with operations defined pointwise on $\partial_{e} K$.

Let π^{s} be the map which restricts elements of $S(K)^{\mu}$ to functions on $\partial_{e} K$. The following representation of $Z\left(S(K)^{\mu}\right)$ as an algebra of measurable functions on $\partial_{e} K$ was proved in [6]. The statement has been modified slightly to suit the purpose of this note.

THEOREM 1.2. There exists a σ-algebra \mathscr{R} of subsets of $\partial_{e} K$ such that π^{s} is an isometric algebraic isomorphism from $Z\left(S(K)^{\mu}\right)$ onto the algebra $F\left(\partial_{e} K, \mathscr{R}\right)$ of bounded \mathscr{R}-measurable functions on $\partial_{e} K$. There exists a unique affine map $x \rightarrow \nu_{x}$ from K into the set of probability measures on \mathscr{R} satisfying, for $z \in Z\left(S(K)^{\mu}\right)$,

$$
z(x)=\int_{\partial_{\varepsilon} K} \pi^{s}(z) d \nu_{x}
$$

