THE R-BOREL STRUCTURE ON A CHOQUET SIMPLEX

R. R. SMITH

The R-Borel structure on a Choquet simplex K is studied. It is shown that the central decomposition and maximal measures coincide, and this is used to improve the wellknown theorem that maximal measures are pseudo-concentrated on the extreme boundary.

1. Introduction. Let K denote a compact convex subset of a locally convex Hausdorff topological vector space, and denote by $A^b(K)$ the Banach space of bounded real valued affine functions on K. The symbols A(K), $A(K)^m$, and $A(K)_m$ denote respectively the sets of continuous, lower semi-continuous and upper semi-continuous functions in $A^b(K)$. Set $S(K) = A(K)^m + A(K)_m$, and let $S(K)^{\mu}$ be the smallest subset of $A^b(K)$ containing S(K) and closed under the formation of pointwise limits of uniformly bounded monotone sequences. $S(K)^{\mu}$ is a Banach space, the following properties of which were obtained in [6].

THEOREM 1.1. Consider $a \in S(K)^{\mu}$. (i) $||a|| = ||a| \partial_{e}K||$. (ii) $a \ge 0$ if and only if $a|\partial_{e}K \ge 0$.

 $S(K)^{\mu}$ is an order unit space and thus possesses a centre $Z(S(K)^{\mu})$ defined in terms of order bounded operators [2]. However a more convenient formulation was obtained in [6]: $z \in S(K)^{\mu}$ is said to be a central element if and only if to each $a \in S(K)^{\mu}$ there corresponds $b \in S(K)^{\mu}$ satisfying b(x) = a(x)z(x) for all $x \in \partial_{e}K$. $Z(S(K)^{\mu})$ is then seen to be an algebra and a lattice with operations defined pointwise on $\partial_{e}K$.

Let π^s be the map which restricts elements of $S(K)^{\mu}$ to functions on $\partial_e K$. The following representation of $Z(S(K)^{\mu})$ as an algebra of measurable functions on $\partial_e K$ was proved in [6]. The statement has been modified slightly to suit the purpose of this note.

THEOREM 1.2. There exists a σ -algebra \mathscr{R} of subsets of $\partial_{\mathfrak{e}}K$ such that π^s is an isometric algebraic isomorphism from $Z(S(K)^{\mu})$ onto the algebra $F(\partial_{\mathfrak{e}}K, \mathscr{R})$ of bounded \mathscr{R} -measurable functions on $\partial_{\mathfrak{e}}K$. There exists a unique affine map $x \to \mathcal{V}_x$ from K into the set of probability measures on \mathscr{R} satisfying, for $z \in Z(S(K)^{\mu})$,

$$z(x) = \int_{{}^{\vartheta} e^K} \pi^s(z) d oldsymbol{
u}_x$$
 .