IDEALS AND RADICALS OF SOME ENDOMORPHISM RINGS

Jutta Hausen and Johnny A. Johnson

Abstract

Let R be the full ring of endomorphisms of a reduced abelian p-group G. A description is given, in terms of its action on G, of the Jacobson radical $J(R)$ of R for the case that G is sufficiently projective. Other ideals and radicals of R and their relation to $J(R)$ are discussed.

1. The results. In order to study the structure of a ring R, one of the most important tools is the investigation of radicals. In this context, the following ideals are of interest. Throughout, the word ideal will mean two-sided ideal.
$N(R)$: sum of all nilpotent ideals of R;
$B(R)$: intersection of all prime ideals of R (Baer radical);
$L(R)$: sum of all locally nilpotent ideals of R (Levitzki radical);
$K(R)$: sum of all nil ideals of R (Koethe radical);
$J(R)$: sum of all quasi-regular ideals of R (Jacobson radical).
One has

$$
\begin{equation*}
N(R) \cong B(R) \subseteq L(R) \subseteq K(R) \subseteq J(R) \tag{1.1}
\end{equation*}
$$

and all of these ideals, with the possible exception of $J(R)$, are nil [4, pp. 193-197].

In this note we consider the case where $R=\operatorname{End} G$ is the full ring of endomorphisms of a reduced p-primary abelian group G. Our interest will be focused primarily on the Jacobson radical.

In [3] and [9], respectively, lower and upper bounds for $J(\operatorname{End} G)$ where given, namely

$$
\begin{equation*}
I(G) \subseteq J(\text { End } G) \subseteq H(G) \tag{1.2}
\end{equation*}
$$

which are defined as follows. Note that we write mappings to the right; throughout, λ is a nonzero ordinal such that $p^{\lambda} G=0$. Then let $I(G)$ be the set of all $\varepsilon \in \operatorname{End} G$ for which there exists a finite sequence of ordinals $\sigma_{0}, \sigma_{1}, \cdots, \sigma_{k+1}$, where $k=k(\varepsilon)$, such that

$$
0=\sigma_{0}<\sigma_{1}<\cdots<\sigma_{k}<\sigma_{k+1}=\lambda
$$

and, for $i=0, \cdots, k, p^{\sigma_{i}} G[p] \varepsilon \subseteq p^{\sigma_{i+1}} G$. Let $H(G)$ be the set of all $\varepsilon \in$ End G such that, for each nonnegative integer $n, p^{n} G[p] \varepsilon \subseteq p^{n+1} G$. Clearly, both $I(G)$ and $H(G)$ are ideals of End G. R. S. Pierce has shown that $J($ End $G)=H(G)$ if G is torsion-complete, and $J(\operatorname{End} G) \subsetneq$ $H(G)$ if G contains an unbounded direct summand which is a direct

