REALIZING PARTIAL ORDERINGS BY CLASSES OF CO-SIMPLE SETS

J. B. REMMEL

We show that we can embed any countable partial ordering into a class of co-r.e. bi-dense subsets of the rationals, each subset of a fixed nonzero r.e. Turing degree, under an order induced by recursive similarity transformations. Also, we show that we can embed any countable partial ordering into the co-simple isols under either the order induced by addition of isols or the order induced by recursive injections.

0. Introduction. Let C denote the continuum, Q denote the rationals, and N denote the natural numbers. We let c denote the cardinality of C and \aleph_0 denote the cardinality of N. Given two linear orderings H and G, we say (i) H is embeddable in G, H < G, if there is an order preserving map from H into G and (ii) H is similar to G if there is an order preserving map from H onto G. H is said to be bi-dense in G if $H \subseteq G$ and both H and G - H are dense in G.

Let π be an effective one-one correspondence between Q and the natural numbers. We shall consider π to be an effective Gödel numbering and thus we will identify an element or subset of Q with its image under π . We let \leq or < refer to the usual ordering on N and \leq or \leq refer to the usual ordering on Q. Given $\alpha, \beta \subseteq Q$, we say α is recursively embeddable in $\beta, \alpha <_c \beta$, if there is a partial recursive function φ such that $\alpha \subseteq \delta \varphi$, the domain of φ , and the restriction of φ to $\alpha, \varphi \upharpoonright \alpha$, is an order preserving map from α into β .

In [5], Hay, Manaster, and Rosenstein show that complements of recursively enumerable bi-dense subsets of Q of any fixed nonzero r.e. degree under \prec_c bear a strong resemblance to bi-dense subsets of C of cardinality c under \prec . The main result of this paper answers a question raised by Laver. Based on the results of [5], Laver asked whether or not the following theorem is true.

THEOREM A. Let β be any recursively enumerable set which is not recursive and let P be any countable partial ordering. Then there is a collection of co-recursively enumerable bi-dense subsets of Q, each Turing equivalent to β , such that, under \leq_{c} , this collection is order isomorphic to P.

(A set $A \subseteq N$ is co-recursively enumerable if N - A is recursively enumerable.) In §2 of this paper, we prove Theorem A using methods that Sack's [8] developed to prove that any countable partial ordering